import sys import six from pathlib2 import Path from ...binding.frameworks.base_bind import PatchBaseModelIO from ..frameworks import _patched_call, WeightsFileHandler, _Empty from ..import_bind import PostImportHookPatching from ...config import running_remotely from ...model import Framework class PatchPyTorchModelIO(PatchBaseModelIO): __main_task = None __patched = None @staticmethod def update_current_task(task, **_): PatchPyTorchModelIO.__main_task = task PatchPyTorchModelIO._patch_model_io() PostImportHookPatching.add_on_import('torch', PatchPyTorchModelIO._patch_model_io) @staticmethod def _patch_model_io(): if PatchPyTorchModelIO.__patched: return if 'torch' not in sys.modules: return PatchPyTorchModelIO.__patched = True # noinspection PyBroadException try: # hack: make sure tensorflow.__init__ is called import torch torch.save = _patched_call(torch.save, PatchPyTorchModelIO._save) torch.load = _patched_call(torch.load, PatchPyTorchModelIO._load) except ImportError: pass except Exception: pass # print('Failed patching pytorch') @staticmethod def _save(original_fn, obj, f, *args, **kwargs): ret = original_fn(obj, f, *args, **kwargs) if not PatchPyTorchModelIO.__main_task: return ret if isinstance(f, six.string_types): filename = f elif hasattr(f, 'name'): filename = f.name # noinspection PyBroadException try: f.flush() except Exception: pass else: filename = None # give the model a descriptive name based on the file name # noinspection PyBroadException try: model_name = Path(filename).stem except Exception: model_name = None WeightsFileHandler.create_output_model(obj, filename, Framework.pytorch, PatchPyTorchModelIO.__main_task, singlefile=True, model_name=model_name) return ret @staticmethod def _load(original_fn, f, *args, **kwargs): if isinstance(f, six.string_types): filename = f elif hasattr(f, 'name'): filename = f.name else: filename = None if not PatchPyTorchModelIO.__main_task: return original_fn(f, *args, **kwargs) # register input model empty = _Empty() if running_remotely(): filename = WeightsFileHandler.restore_weights_file(empty, filename, Framework.pytorch, PatchPyTorchModelIO.__main_task) model = original_fn(filename or f, *args, **kwargs) else: # try to load model before registering, in case we fail model = original_fn(filename or f, *args, **kwargs) WeightsFileHandler.restore_weights_file(empty, filename, Framework.pytorch, PatchPyTorchModelIO.__main_task) if empty.trains_in_model: # noinspection PyBroadException try: model.trains_in_model = empty.trains_in_model except Exception: pass return model