mirror of
https://github.com/clearml/clearml
synced 2025-02-01 01:26:49 +00:00
142 lines
5.3 KiB
Python
142 lines
5.3 KiB
Python
import sys
|
|
|
|
import numpy as np
|
|
|
|
from . import _patched_call
|
|
from .tensorflow_bind import WeightsGradientHistHelper
|
|
from ..import_bind import PostImportHookPatching
|
|
from ...debugging.log import LoggerRoot
|
|
|
|
|
|
class PatchFastai(object):
|
|
__metrics_names = None # TODO: STORE ON OBJECT OR IN LOOKUP BASED ON OBJECT ID
|
|
__main_task = None
|
|
|
|
@staticmethod
|
|
def update_current_task(task, **_):
|
|
PatchFastai.__main_task = task
|
|
PatchFastai._patch_model_callback()
|
|
PostImportHookPatching.add_on_import("fastai", PatchFastai._patch_model_callback)
|
|
|
|
@staticmethod
|
|
def _patch_model_callback():
|
|
if "fastai" in sys.modules:
|
|
try:
|
|
from fastai.basic_train import Recorder
|
|
|
|
Recorder.on_batch_end = _patched_call(Recorder.on_batch_end, PatchFastai._on_batch_end)
|
|
Recorder.on_backward_end = _patched_call(Recorder.on_backward_end, PatchFastai._on_backward_end)
|
|
Recorder.on_epoch_end = _patched_call(Recorder.on_epoch_end, PatchFastai._on_epoch_end)
|
|
Recorder.on_train_begin = _patched_call(Recorder.on_train_begin, PatchFastai._on_train_begin)
|
|
except ImportError:
|
|
pass
|
|
except Exception as ex:
|
|
LoggerRoot.get_base_logger(PatchFastai).debug(str(ex))
|
|
|
|
@staticmethod
|
|
def _on_train_begin(original_fn, recorder, *args, **kwargs):
|
|
original_fn(recorder, *args, **kwargs)
|
|
if not PatchFastai.__main_task:
|
|
return
|
|
# noinspection PyBroadException
|
|
try:
|
|
PatchFastai.__metrics_names = ["train_loss"] if recorder.no_val else ["train_loss", "valid_loss"]
|
|
PatchFastai.__metrics_names += recorder.metrics_names
|
|
except Exception as ex:
|
|
pass
|
|
|
|
@staticmethod
|
|
def _on_backward_end(original_fn, recorder, *args, **kwargs):
|
|
def count_zeros(gradient):
|
|
n = gradient.data.data.cpu().numpy()
|
|
return n.size - n.count_nonzero()
|
|
|
|
original_fn(recorder, *args, **kwargs)
|
|
|
|
if not PatchFastai.__main_task:
|
|
return
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
gradients = [
|
|
x.grad.clone().detach().cpu() for x in recorder.learn.model.parameters() if x.grad is not None
|
|
]
|
|
if len(gradients) == 0:
|
|
return
|
|
|
|
# TODO: Check computation!
|
|
gradient_stats = np.array([
|
|
(x.data.norm(), count_zeros(x), x.data.mean(), x.data.median(), x.data.max(), x.data.min())
|
|
for x in gradients])
|
|
stats_report = dict(
|
|
avg_norm=np.mean(gradient_stats[:, 0]),
|
|
median_norm=np.median(gradient_stats[:, 0]),
|
|
max_norm=np.max(gradient_stats[:, 0]),
|
|
min_norm=np.min(gradient_stats[:, 0]),
|
|
num_zeros=gradient_stats[:, 1].sum(),
|
|
avg_gradient=gradient_stats[:, 2].mean(),
|
|
median_gradient=gradient_stats[:, 3].median(),
|
|
max_gradient=gradient_stats[:, 4].max(),
|
|
min_gradient=gradient_stats[:, 5].min(),
|
|
)
|
|
|
|
logger = PatchFastai.__main_task.get_logger()
|
|
iteration = kwargs.get("iteration", 0)
|
|
for name, val in stats_report.items():
|
|
logger.report_scalar(title="model_stats_gradients", series=name, value=val, iteration=iteration)
|
|
except Exception as ex:
|
|
pass
|
|
|
|
@staticmethod
|
|
def _on_epoch_end(original_fn, recorder, *args, **kwargs):
|
|
original_fn(recorder, *args, **kwargs)
|
|
if not PatchFastai.__main_task:
|
|
return
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
logger = PatchFastai.__main_task.get_logger()
|
|
iteration = kwargs.get("iteration")
|
|
for series, value in zip(
|
|
PatchFastai.__metrics_names,
|
|
[kwargs.get("smooth_loss")] + kwargs.get("last_metrics", []),
|
|
):
|
|
logger.report_scalar(title="metrics", series=series, value=value, iteration=iteration)
|
|
PatchFastai.__main_task.flush()
|
|
except Exception:
|
|
pass
|
|
|
|
@staticmethod
|
|
def _on_batch_end(original_fn, recorder, *args, **kwargs):
|
|
original_fn(recorder, *args, **kwargs)
|
|
if not PatchFastai.__main_task:
|
|
return
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
if kwargs.get("iteration") == 0 or not kwargs.get("train"):
|
|
return
|
|
|
|
logger = PatchFastai.__main_task.get_logger()
|
|
logger.report_scalar(
|
|
title="metrics",
|
|
series="train_loss",
|
|
value=kwargs.get("last_loss", 0),
|
|
iteration=kwargs.get("iteration", 0)
|
|
)
|
|
gradient_hist_helper = WeightsGradientHistHelper(logger)
|
|
iteration = kwargs.get("iteration")
|
|
params = [
|
|
(name, values.clone().detach().cpu())
|
|
for (name, values) in recorder.model.named_parameters()
|
|
]
|
|
for (name, values) in params:
|
|
gradient_hist_helper.add_histogram(
|
|
title="model_weights",
|
|
series="model_weights/" + name,
|
|
step=iteration,
|
|
hist_data=values,
|
|
)
|
|
except Exception:
|
|
pass
|