mirror of
https://github.com/clearml/clearml
synced 2025-04-02 12:08:33 +00:00
Refactor fastai bind
This commit is contained in:
parent
00ccadf591
commit
093477cb35
@ -1,4 +1,3 @@
|
||||
import statistics
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
@ -10,16 +9,14 @@ from ...debugging.log import LoggerRoot
|
||||
|
||||
|
||||
class PatchFastai(object):
|
||||
__metrics_names = None
|
||||
__metrics_names = None # TODO: STORE ON OBJECT OR IN LOOKUP BASED ON OBJECT ID
|
||||
__main_task = None
|
||||
|
||||
@staticmethod
|
||||
def update_current_task(task, **kwargs):
|
||||
def update_current_task(task, **_):
|
||||
PatchFastai.__main_task = task
|
||||
PatchFastai._patch_model_callback()
|
||||
PostImportHookPatching.add_on_import(
|
||||
"fastai", PatchFastai._patch_model_callback
|
||||
)
|
||||
PostImportHookPatching.add_on_import("fastai", PatchFastai._patch_model_callback)
|
||||
|
||||
@staticmethod
|
||||
def _patch_model_callback():
|
||||
@ -27,19 +24,10 @@ class PatchFastai(object):
|
||||
try:
|
||||
from fastai.basic_train import Recorder
|
||||
|
||||
Recorder.on_batch_end = _patched_call(
|
||||
Recorder.on_batch_end, PatchFastai._on_batch_end
|
||||
)
|
||||
Recorder.on_backward_end = _patched_call(
|
||||
Recorder.on_backward_end, PatchFastai._on_backward_end
|
||||
)
|
||||
Recorder.on_epoch_end = _patched_call(
|
||||
Recorder.on_epoch_end, PatchFastai._on_epoch_end
|
||||
)
|
||||
Recorder.on_train_begin = _patched_call(
|
||||
Recorder.on_train_begin, PatchFastai._on_train_begin
|
||||
)
|
||||
|
||||
Recorder.on_batch_end = _patched_call(Recorder.on_batch_end, PatchFastai._on_batch_end)
|
||||
Recorder.on_backward_end = _patched_call(Recorder.on_backward_end, PatchFastai._on_backward_end)
|
||||
Recorder.on_epoch_end = _patched_call(Recorder.on_epoch_end, PatchFastai._on_epoch_end)
|
||||
Recorder.on_train_begin = _patched_call(Recorder.on_train_begin, PatchFastai._on_train_begin)
|
||||
except ImportError:
|
||||
pass
|
||||
except Exception as ex:
|
||||
@ -48,87 +36,106 @@ class PatchFastai(object):
|
||||
@staticmethod
|
||||
def _on_train_begin(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
PatchFastai.__metrics_names = (
|
||||
["train_loss"] if recorder.no_val else ["train_loss", "valid_loss"]
|
||||
)
|
||||
PatchFastai.__metrics_names += recorder.metrics_names
|
||||
if not PatchFastai.__main_task:
|
||||
return
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
PatchFastai.__metrics_names = ["train_loss"] if recorder.no_val else ["train_loss", "valid_loss"]
|
||||
PatchFastai.__metrics_names += recorder.metrics_names
|
||||
except Exception as ex:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _on_backward_end(original_fn, recorder, *args, **kwargs):
|
||||
def report_model_stats(series, value):
|
||||
logger.report_scalar("model_stats_gradients", series, value, iteration)
|
||||
def count_zeros(gradient):
|
||||
n = gradient.data.data.cpu().numpy()
|
||||
return n.size - n.count_nonzero()
|
||||
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
gradients = [
|
||||
x.grad.clone().detach().cpu()
|
||||
for x in recorder.learn.model.parameters()
|
||||
if x.grad is not None
|
||||
]
|
||||
if len(gradients) == 0:
|
||||
|
||||
if not PatchFastai.__main_task:
|
||||
return
|
||||
iteration = kwargs.get("iteration")
|
||||
norms = [x.data.norm() for x in gradients]
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
for name, val in zip(
|
||||
[
|
||||
"avg_norm",
|
||||
"median_norm",
|
||||
"max_norm",
|
||||
"min_norm",
|
||||
"num_zeros",
|
||||
"avg_gradient",
|
||||
"median_gradient",
|
||||
"max_gradient",
|
||||
"min_gradient",
|
||||
],
|
||||
[
|
||||
sum(norms) / len(gradients),
|
||||
statistics.median(norms),
|
||||
max(norms),
|
||||
min(norms),
|
||||
sum(
|
||||
(np.asarray(x) == 0.0).sum()
|
||||
for x in [x.data.data.cpu().numpy() for x in gradients]
|
||||
),
|
||||
sum(x.data.mean() for x in gradients) / len(gradients),
|
||||
statistics.median(x.data.median() for x in gradients),
|
||||
max(x.data.max() for x in gradients),
|
||||
min(x.data.min() for x in gradients),
|
||||
],
|
||||
):
|
||||
report_model_stats(name, val)
|
||||
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
gradients = [
|
||||
x.grad.clone().detach().cpu() for x in recorder.learn.model.parameters() if x.grad is not None
|
||||
]
|
||||
if len(gradients) == 0:
|
||||
return
|
||||
|
||||
# TODO: Check computation!
|
||||
gradient_stats = np.array([
|
||||
(x.data.norm(), count_zeros(x), x.data.mean(), x.data.median(), x.data.max(), x.data.min())
|
||||
for x in gradients])
|
||||
stats_report = dict(
|
||||
avg_norm=np.mean(gradient_stats[:, 0]),
|
||||
median_norm=np.median(gradient_stats[:, 0]),
|
||||
max_norm=np.max(gradient_stats[:, 0]),
|
||||
min_norm=np.min(gradient_stats[:, 0]),
|
||||
num_zeros=gradient_stats[:, 1].sum(),
|
||||
avg_gradient=gradient_stats[:, 2].mean(),
|
||||
median_gradient=gradient_stats[:, 3].median(),
|
||||
max_gradient=gradient_stats[:, 4].max(),
|
||||
min_gradient=gradient_stats[:, 5].min(),
|
||||
)
|
||||
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
iteration = kwargs.get("iteration", 0)
|
||||
for name, val in stats_report.items():
|
||||
logger.report_scalar(title="model_stats_gradients", series=name, value=val, iteration=iteration)
|
||||
except Exception as ex:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _on_epoch_end(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
iteration = kwargs.get("iteration")
|
||||
for series, value in zip(
|
||||
PatchFastai.__metrics_names,
|
||||
[kwargs.get("smooth_loss")] + kwargs.get("last_metrics", []),
|
||||
):
|
||||
logger.report_scalar("metrics", series, value, iteration)
|
||||
PatchFastai.__main_task.flush()
|
||||
if not PatchFastai.__main_task:
|
||||
return
|
||||
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
iteration = kwargs.get("iteration")
|
||||
for series, value in zip(
|
||||
PatchFastai.__metrics_names,
|
||||
[kwargs.get("smooth_loss")] + kwargs.get("last_metrics", []),
|
||||
):
|
||||
logger.report_scalar(title="metrics", series=series, value=value, iteration=iteration)
|
||||
PatchFastai.__main_task.flush()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _on_batch_end(original_fn, recorder, *args, **kwargs):
|
||||
original_fn(recorder, *args, **kwargs)
|
||||
if kwargs.get("iteration") == 0 or not kwargs.get("train"):
|
||||
if not PatchFastai.__main_task:
|
||||
return
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
logger.report_scalar(
|
||||
"metrics", "train_loss", kwargs.get("last_loss"), kwargs.get("iteration")
|
||||
)
|
||||
gradient_hist_helper = WeightsGradientHistHelper(logger)
|
||||
iteration = kwargs.get("iteration")
|
||||
params = [
|
||||
(name, values.clone().detach().cpu())
|
||||
for (name, values) in recorder.model.named_parameters()
|
||||
]
|
||||
for (name, values) in params:
|
||||
gradient_hist_helper.add_histogram(
|
||||
title="model_weights",
|
||||
series="model_weights/" + name,
|
||||
step=iteration,
|
||||
hist_data=values,
|
||||
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
if kwargs.get("iteration") == 0 or not kwargs.get("train"):
|
||||
return
|
||||
|
||||
logger = PatchFastai.__main_task.get_logger()
|
||||
logger.report_scalar(
|
||||
title="metrics",
|
||||
series="train_loss",
|
||||
value=kwargs.get("last_loss", 0),
|
||||
iteration=kwargs.get("iteration", 0)
|
||||
)
|
||||
gradient_hist_helper = WeightsGradientHistHelper(logger)
|
||||
iteration = kwargs.get("iteration")
|
||||
params = [
|
||||
(name, values.clone().detach().cpu())
|
||||
for (name, values) in recorder.model.named_parameters()
|
||||
]
|
||||
for (name, values) in params:
|
||||
gradient_hist_helper.add_histogram(
|
||||
title="model_weights",
|
||||
series="model_weights/" + name,
|
||||
step=iteration,
|
||||
hist_data=values,
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user