clearml initial version 0.17.0

This commit is contained in:
allegroai
2020-12-22 23:25:37 +02:00
parent a460df1e68
commit d327f2e2b9
145 changed files with 3136 additions and 794 deletions

View File

@@ -1,4 +1,4 @@
# TRAINS - Keras with Tensorboard example code, automatic logging model and Tensorboard outputs
# ClearML - Keras with Tensorboard example code, automatic logging model and Tensorboard outputs
#
# Train a simple deep NN on the MNIST dataset.
# Gets to 98.40% test accuracy after 20 epochs
@@ -17,10 +17,10 @@ from tensorflow.keras.layers import Activation, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import RMSprop
from trains import Task, Logger
from clearml import Task, Logger
# Connecting TRAINS
# Connecting ClearML
task = Task.init(project_name='examples', task_name='Keras HP optimization base')

View File

@@ -1,7 +1,7 @@
import logging
from trains import Task
from trains.automation import (
from clearml import Task
from clearml.automation import (
DiscreteParameterRange, HyperParameterOptimizer, RandomSearch,
UniformIntegerParameterRange)
@@ -9,14 +9,14 @@ aSearchStrategy = None
if not aSearchStrategy:
try:
from trains.automation.optuna import OptimizerOptuna
from clearml.automation.optuna import OptimizerOptuna
aSearchStrategy = OptimizerOptuna
except ImportError as ex:
pass
if not aSearchStrategy:
try:
from trains.automation.hpbandster import OptimizerBOHB
from clearml.automation.hpbandster import OptimizerBOHB
aSearchStrategy = OptimizerBOHB
except ImportError as ex:
pass
@@ -40,7 +40,7 @@ def job_complete_callback(
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
# Connecting TRAINS
# Connecting ClearML
task = Task.init(project_name='Hyper-Parameter Optimization',
task_name='Automatic Hyper-Parameter Optimization',
task_type=Task.TaskTypes.optimizer,
@@ -73,10 +73,11 @@ an_optimizer = HyperParameterOptimizer(
UniformIntegerParameterRange('General/layer_2', min_value=128, max_value=512, step_size=128),
DiscreteParameterRange('General/batch_size', values=[96, 128, 160]),
DiscreteParameterRange('General/epochs', values=[30]),
DiscreteParameterRange('General/optimizer', values=['adam', 'sgd']),
],
# this is the objective metric we want to maximize/minimize
objective_metric_title='epoch_accuracy',
objective_metric_series='epoch_accuracy',
objective_metric_title='accuracy',
objective_metric_series='accuracy',
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign='max',
# let us limit the number of concurrent experiments,
@@ -109,7 +110,7 @@ an_optimizer = HyperParameterOptimizer(
# if we are running as a service, just enqueue ourselves into the services queue and let it run the optimization
if args['run_as_service']:
# if this code is executed by `trains-agent` the function call does nothing.
# if this code is executed by `clearml-agent` the function call does nothing.
# if executed locally, the local process will be terminated, and a remote copy will be executed instead
task.execute_remotely(queue_name='services', exit_process=True)

View File

@@ -1,3 +1,3 @@
keras
tensorflow
trains
clearml