mirror of
https://github.com/clearml/clearml
synced 2025-03-09 13:30:42 +00:00
Add Pipeline Controller automation and example
This commit is contained in:
parent
4f06ab1c59
commit
5beecbb078
24
examples/pipeline/pipeline_controller.py
Normal file
24
examples/pipeline/pipeline_controller.py
Normal file
@ -0,0 +1,24 @@
|
||||
from trains import Task
|
||||
from trains.automation.controller import PipelineController
|
||||
|
||||
|
||||
task = Task.init(project_name='examples', task_name='pipeline demo', task_type=Task.TaskTypes.controller)
|
||||
|
||||
pipe = PipelineController(default_execution_queue='default')
|
||||
pipe.add_step(name='stage_data', base_task_project='examples', base_task_name='pipeline step 1 dataset artifact')
|
||||
pipe.add_step(name='stage_process', parents=['stage_data', ],
|
||||
base_task_project='examples', base_task_name='pipeline step 2 process dataset',
|
||||
parameter_override={'General/dataset_url': '${stage_data.artifacts.dataset.url}',
|
||||
'General/test_size': '0.25'})
|
||||
pipe.add_step(name='stage_train', parents=['stage_process', ],
|
||||
base_task_project='examples', base_task_name='pipeline step 3 train model',
|
||||
parameter_override={'General/dataset_task_id': '${stage_process.id}'})
|
||||
|
||||
# Starting the pipeline (in the background)
|
||||
pipe.start()
|
||||
# Wait until pipeline terminates
|
||||
pipe.wait()
|
||||
# cleanup everything
|
||||
pipe.stop()
|
||||
|
||||
print('done')
|
19
examples/pipeline/step1_dataset_artifact.py
Normal file
19
examples/pipeline/step1_dataset_artifact.py
Normal file
@ -0,0 +1,19 @@
|
||||
from trains import Task, StorageManager
|
||||
|
||||
# create an dataset experiment
|
||||
task = Task.init(project_name="examples", task_name="pipeline step 1 dataset artifact")
|
||||
|
||||
# only create the task, we will actually execute it later
|
||||
task.execute_remotely()
|
||||
|
||||
# simulate local dataset, download one, so we have something local
|
||||
local_iris_pkl = StorageManager.get_local_copy(
|
||||
remote_url='https://github.com/allegroai/events/raw/master/odsc20-east/generic/iris_dataset.pkl')
|
||||
|
||||
# add and upload local file containing our toy dataset
|
||||
task.upload_artifact('dataset', artifact_object=local_iris_pkl)
|
||||
|
||||
print('uploading artifacts in the background')
|
||||
|
||||
# we are done
|
||||
print('Done')
|
55
examples/pipeline/step2_data_processing.py
Normal file
55
examples/pipeline/step2_data_processing.py
Normal file
@ -0,0 +1,55 @@
|
||||
import pickle
|
||||
from trains import Task, StorageManager
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
# Connecting TRAINS
|
||||
task = Task.init(project_name="examples", task_name="pipeline step 2 process dataset")
|
||||
|
||||
# program arguments
|
||||
# Use either dataset_task_id to point to a tasks artifact or
|
||||
# use a direct url with dataset_url
|
||||
args = {
|
||||
'dataset_task_id': '',
|
||||
'dataset_url': '',
|
||||
'random_state': 42,
|
||||
'test_size': 0.2,
|
||||
}
|
||||
|
||||
# store arguments, later we will be able to change them from outside the code
|
||||
task.connect(args)
|
||||
print('Arguments: {}'.format(args))
|
||||
|
||||
# only create the task, we will actually execute it later
|
||||
task.execute_remotely()
|
||||
|
||||
# get dataset from task's artifact
|
||||
if args['dataset_task_id']:
|
||||
dataset_upload_task = Task.get_task(task_id=args['dataset_task_id'])
|
||||
print('Input task id={} artifacts {}'.format(args['dataset_task_id'], list(dataset_upload_task.artifacts.keys())))
|
||||
# download the artifact
|
||||
iris_pickle = dataset_upload_task.artifacts['dataset'].get_local_copy()
|
||||
# get the dataset from a direct url
|
||||
elif args['dataset_url']:
|
||||
iris_pickle = StorageManager.get_local_copy(remote_url=args['dataset_url'])
|
||||
else:
|
||||
raise ValueError("Missing dataset link")
|
||||
|
||||
# open the local copy
|
||||
iris = pickle.load(open(iris_pickle, 'rb'))
|
||||
|
||||
# "process" data
|
||||
X = iris.data
|
||||
y = iris.target
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=args['test_size'], random_state=args['random_state'])
|
||||
|
||||
# upload processed data
|
||||
print('Uploading process dataset')
|
||||
task.upload_artifact('X_train', X_train)
|
||||
task.upload_artifact('X_test', X_test)
|
||||
task.upload_artifact('y_train', y_train)
|
||||
task.upload_artifact('y_test', y_test)
|
||||
|
||||
print('Notice, artifacts are uploaded in the background')
|
||||
print('Done')
|
56
examples/pipeline/step3_train_model.py
Normal file
56
examples/pipeline/step3_train_model.py
Normal file
@ -0,0 +1,56 @@
|
||||
import joblib
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
|
||||
from trains import Task
|
||||
|
||||
# Connecting TRAINS
|
||||
task = Task.init(project_name="examples", task_name="pipeline step 3 train model")
|
||||
|
||||
# Arguments
|
||||
args = {
|
||||
'dataset_task_id': 'REPLACE_WITH_DATASET_TASK_ID',
|
||||
}
|
||||
task.connect(args)
|
||||
|
||||
# only create the task, we will actually execute it later
|
||||
task.execute_remotely()
|
||||
|
||||
print('Retrieving Iris dataset')
|
||||
dataset_task = Task.get_task(task_id=args['dataset_task_id'])
|
||||
X_train = dataset_task.artifacts['X_train'].get()
|
||||
X_test = dataset_task.artifacts['X_test'].get()
|
||||
y_train = dataset_task.artifacts['y_train'].get()
|
||||
y_test = dataset_task.artifacts['y_test'].get()
|
||||
print('Iris dataset loaded')
|
||||
|
||||
model = LogisticRegression(solver='liblinear', multi_class='auto')
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
joblib.dump(model, 'model.pkl', compress=True)
|
||||
|
||||
loaded_model = joblib.load('model.pkl')
|
||||
result = loaded_model.score(X_test, y_test)
|
||||
|
||||
print('model trained & stored')
|
||||
|
||||
x_min, x_max = X_test[:, 0].min() - .5, X_test[:, 0].max() + .5
|
||||
y_min, y_max = X_test[:, 1].min() - .5, X_test[:, 1].max() + .5
|
||||
h = .02 # step size in the mesh
|
||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
||||
plt.figure(1, figsize=(4, 3))
|
||||
|
||||
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired)
|
||||
plt.xlabel('Sepal length')
|
||||
plt.ylabel('Sepal width')
|
||||
|
||||
plt.xlim(xx.min(), xx.max())
|
||||
plt.ylim(yy.min(), yy.max())
|
||||
plt.xticks(())
|
||||
plt.yticks(())
|
||||
|
||||
plt.title('Iris Types')
|
||||
plt.show()
|
||||
|
||||
print('Done')
|
722
trains/automation/controller.py
Normal file
722
trains/automation/controller.py
Normal file
@ -0,0 +1,722 @@
|
||||
import re
|
||||
from copy import copy
|
||||
from datetime import datetime
|
||||
from logging import getLogger
|
||||
from threading import Thread, Event
|
||||
from time import time
|
||||
|
||||
from plotly import graph_objects as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
from attr import attrib, attrs
|
||||
from typing import Sequence, Optional, Mapping, Callable
|
||||
|
||||
from trains import Task
|
||||
from trains.automation import TrainsJob
|
||||
from trains.model import BaseModel
|
||||
|
||||
|
||||
class PipelineController(object):
|
||||
"""
|
||||
Pipeline controller.
|
||||
Pipeline is a DAG of base tasks, each task will be cloned (arguments changed as required) executed and monitored
|
||||
The pipeline process (task) itself can be executed manually or by the trains-agent services queue.
|
||||
Notice: The pipeline controller lives as long as the pipeline itself is being executed.
|
||||
"""
|
||||
_tag = 'pipeline'
|
||||
_step_pattern = r"\${[^}]*}"
|
||||
_config_section = 'Pipeline'
|
||||
|
||||
@attrs
|
||||
class Node(object):
|
||||
name = attrib(type=str)
|
||||
base_task_id = attrib(type=str)
|
||||
queue = attrib(type=str, default=None)
|
||||
parents = attrib(type=list, default=[])
|
||||
timeout = attrib(type=float, default=None)
|
||||
parameters = attrib(type=dict, default={})
|
||||
executed = attrib(type=str, default=None)
|
||||
job = attrib(type=TrainsJob, default=None)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
pool_frequency=0.2, # type: float
|
||||
default_execution_queue=None, # type: Optional[str]
|
||||
pipeline_time_limit=None, # type: Optional[float]
|
||||
auto_connect_task=True, # type: bool
|
||||
always_create_task=False, # type: bool
|
||||
):
|
||||
# type: (...) -> ()
|
||||
"""
|
||||
Create a new pipeline controller. The newly created object will launch and monitor the new experiments.
|
||||
|
||||
:param float pool_frequency: The pooling frequency (in minutes) for monitoring experiments / states.
|
||||
:param str default_execution_queue: The execution queue to use if no execution queue is provided
|
||||
:param float pipeline_time_limit: The maximum time (minutes) for the entire pipeline process. The
|
||||
default is ``None``, indicating no time limit.
|
||||
"""
|
||||
self._nodes = {}
|
||||
self._running_nodes = []
|
||||
self._start_time = None
|
||||
self._pipeline_time_limit = pipeline_time_limit * 60. if pipeline_time_limit else None
|
||||
self._default_execution_queue = default_execution_queue
|
||||
self._pool_frequency = pool_frequency * 60.
|
||||
self._thread = None
|
||||
self._stop_event = None
|
||||
self._experiment_created_cb = None
|
||||
self._task = Task.current_task()
|
||||
self._step_ref_pattern = re.compile(self._step_pattern)
|
||||
if not self._task and always_create_task:
|
||||
self._task = Task.init(
|
||||
project_name='Pipelines',
|
||||
task_name='Pipeline {}'.format(datetime.now()),
|
||||
task_type=Task.TaskTypes.controller,
|
||||
)
|
||||
|
||||
# make sure all the created tasks are our children, as we are creating them
|
||||
if self._task:
|
||||
self._task.add_tags([self._tag])
|
||||
self._auto_connect_task = auto_connect_task
|
||||
|
||||
def add_step(
|
||||
self,
|
||||
name, # type: str
|
||||
base_task_id=None, # type: Optional[str]
|
||||
parents=None, # type: Optional[Sequence[str]]
|
||||
parameter_override=None, # type: Optional[Mapping[str, str]]
|
||||
execution_queue=None, # type: Optional[str]
|
||||
time_limit=None, # type: Optional[float]
|
||||
base_task_project=None, # type: Optional[str]
|
||||
base_task_name=None, # type: Optional[str]
|
||||
):
|
||||
# type: (...) -> bool
|
||||
"""
|
||||
Add a step to the pipeline execution DAG.
|
||||
Each step must have a unique name (this name will later be used to address the step)
|
||||
|
||||
:param str name: Unique of the step. For example `stage1`
|
||||
:param str base_task_id: The Task ID to use for the step. Each time the step is executed,
|
||||
the base Task is cloned, then the cloned task will be sent for execution.
|
||||
:param list parents: Optional list of parent nodes in the DAG.
|
||||
The current step in the pipeline will be sent for execution only after all the parent nodes
|
||||
have been executed successfully.
|
||||
:param dict parameter_override: Optional parameter overriding dictionary.
|
||||
The dict values can reference a previously executed step using the following form '${step_name}'
|
||||
Examples:
|
||||
Artifact access
|
||||
parameter_override={'Args/input_file': '${stage1.artifacts.mydata.url}' }
|
||||
Model access (last model used)
|
||||
parameter_override={'Args/input_file': '${stage1.models.output.-1.url}' }
|
||||
Parameter access
|
||||
parameter_override={'Args/input_file': '${stage3.parameters.Args/input_file}' }
|
||||
Task ID
|
||||
parameter_override={'Args/input_file': '${stage3.id}' }
|
||||
:param str execution_queue: Optional, the queue to use for executing this specific step.
|
||||
If not provided, the task will be sent to the default execution queue, as defined on the class
|
||||
:param float time_limit: Default None, no time limit.
|
||||
Step execution time limit, if exceeded the Task is aborted and the pipeline is stopped and marked failed.
|
||||
:param str base_task_project: If base_task_id is not given,
|
||||
use the base_task_project and base_task_name combination to retrieve the base_task_id to use for the step.
|
||||
:param str base_task_name: If base_task_id is not given,
|
||||
use the base_task_project and base_task_name combination to retrieve the base_task_id to use for the step.
|
||||
:return: True if successful
|
||||
"""
|
||||
# when running remotely do nothing, we will deserialize ourselves when we start
|
||||
if self._task and not self._task.running_locally() and self._task.is_main_task():
|
||||
return True
|
||||
|
||||
if name in self._nodes:
|
||||
raise ValueError('Node named \'{}\' already exists in the pipeline dag'.format(name))
|
||||
|
||||
if not base_task_id:
|
||||
if not base_task_project or not base_task_name:
|
||||
raise ValueError('Either base_task_id or base_task_project/base_task_name must be provided')
|
||||
base_task = Task.get_task(project_name=base_task_project, task_name=base_task_name)
|
||||
if not base_task:
|
||||
raise ValueError('Could not find base_task_project={} base_task_name={}'.format(
|
||||
base_task_project, base_task_name))
|
||||
base_task_id = base_task.id
|
||||
|
||||
self._nodes[name] = self.Node(
|
||||
name=name, base_task_id=base_task_id, parents=parents or [],
|
||||
queue=execution_queue, timeout=time_limit, parameters=parameter_override or {})
|
||||
return True
|
||||
|
||||
def start(self, run_remotely=False, step_task_created_callback=None):
|
||||
# type: (bool, Optional[Callable[[PipelineController.Node, dict], None]]) -> bool
|
||||
"""
|
||||
Start the pipeline controller.
|
||||
If the calling process is stopped, then the controller stops as well.
|
||||
|
||||
:param bool run_remotely: (default False), If True stop the current process and continue execution
|
||||
on a remote machine. This is done by calling the Task.execute_remotely with the queue name 'services'
|
||||
:param Callable step_task_created_callback: Callback function, called when a step (Task) is created
|
||||
and before it is sent for execution.
|
||||
|
||||
.. code-block:: py
|
||||
|
||||
def step_created_callback(
|
||||
node, # type: PipelineController.Node,
|
||||
parameters, # type: dict
|
||||
):
|
||||
pass
|
||||
|
||||
:return: True, if the controller started. False, if the controller did not start.
|
||||
|
||||
"""
|
||||
if self._thread:
|
||||
return True
|
||||
|
||||
# serialize pipeline state
|
||||
pipeline_dag = self._serialize()
|
||||
self._task.connect_configuration(pipeline_dag, name=self._config_section)
|
||||
params = {'continue_pipeline': False,
|
||||
'default_queue': self._default_execution_queue}
|
||||
self._task.connect(params, name=self._config_section)
|
||||
# deserialize back pipeline state
|
||||
if not params['continue_pipeline']:
|
||||
for k in pipeline_dag:
|
||||
pipeline_dag[k]['executed'] = None
|
||||
self._default_execution_queue = params['default_queue']
|
||||
self._deserialize(pipeline_dag)
|
||||
|
||||
if not self._verify():
|
||||
raise ValueError("Failed verifying pipeline execution graph, "
|
||||
"it has either inaccessible nodes, or contains cycles")
|
||||
|
||||
self._update_execution_plot()
|
||||
|
||||
if run_remotely:
|
||||
self._task.execute_remotely(queue_name='services')
|
||||
# we will not get here if we are not running remotely
|
||||
|
||||
self._start_time = time()
|
||||
self._stop_event = Event()
|
||||
self._experiment_created_cb = step_task_created_callback
|
||||
self._thread = Thread(target=self._daemon)
|
||||
self._thread.daemon = True
|
||||
self._thread.start()
|
||||
return True
|
||||
|
||||
def stop(self, timeout=None):
|
||||
# type: (Optional[float]) -> ()
|
||||
"""
|
||||
Stop the pipeline controller and the optimization thread.
|
||||
|
||||
:param float timeout: Wait timeout for the optimization thread to exit (minutes).
|
||||
The default is ``None``, indicating do not wait terminate immediately.
|
||||
"""
|
||||
pass
|
||||
|
||||
def wait(self, timeout=None):
|
||||
# type: (Optional[float]) -> bool
|
||||
"""
|
||||
Wait for the pipeline to finish.
|
||||
|
||||
.. note::
|
||||
This method does not stop the pipeline. Call :meth:`stop` to terminate the pipeline.
|
||||
|
||||
:param float timeout: The timeout to wait for the pipeline to complete (minutes).
|
||||
If ``None``, then wait until we reached the timeout, or pipeline completed.
|
||||
|
||||
:return: True, if the pipeline finished. False, if the pipeline timed out.
|
||||
|
||||
"""
|
||||
if not self.is_running():
|
||||
return True
|
||||
|
||||
if timeout is not None:
|
||||
timeout *= 60.
|
||||
|
||||
_thread = self._thread
|
||||
|
||||
_thread.join(timeout=timeout)
|
||||
if _thread.is_alive():
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def is_running(self):
|
||||
# type: () -> bool
|
||||
"""
|
||||
return True if the pipeline controller is running.
|
||||
|
||||
:return: A boolean indicating whether the pipeline controller is active (still running) or stopped.
|
||||
"""
|
||||
return self._thread is not None
|
||||
|
||||
def elapsed(self):
|
||||
# type: () -> float
|
||||
"""
|
||||
Return minutes elapsed from controller stating time stamp.
|
||||
|
||||
:return: The minutes from controller start time. A negative value means the process has not started yet.
|
||||
"""
|
||||
if self._start_time is None:
|
||||
return -1.0
|
||||
return (time() - self._start_time) / 60.
|
||||
|
||||
def get_pipeline_dag(self):
|
||||
# type: () -> Mapping[str, PipelineController.Node]
|
||||
"""
|
||||
Return the pipeline execution graph, each node in the DAG is PipelineController.Node object.
|
||||
Graph itself is a dictionary of Nodes (key based on the Node name),
|
||||
each node holds links to its parent Nodes (identified by their unique names)
|
||||
|
||||
:return: execution tree, as a nested dictionary
|
||||
Example:
|
||||
{
|
||||
'stage1' : Node() {
|
||||
name: 'stage1'
|
||||
job: TrainsJob
|
||||
...
|
||||
},
|
||||
}
|
||||
"""
|
||||
return self._nodes
|
||||
|
||||
def get_processed_nodes(self):
|
||||
# type: () -> Sequence[PipelineController.Node]
|
||||
"""
|
||||
Return the a list of the processed pipeline nodes, each entry in the list is PipelineController.Node object.
|
||||
|
||||
:return: executed (excluding currently executing) nodes list
|
||||
"""
|
||||
return {k: n for k, n in self._nodes.items() if n.executed}
|
||||
|
||||
def get_running_nodes(self):
|
||||
# type: () -> Sequence[PipelineController.Node]
|
||||
"""
|
||||
Return the a list of the currently running pipeline nodes,
|
||||
each entry in the list is PipelineController.Node object.
|
||||
|
||||
:return: Currently running nodes list
|
||||
"""
|
||||
return {k: n for k, n in self._nodes.items() if k in self._running_nodes}
|
||||
|
||||
def _serialize(self):
|
||||
# type: () -> dict
|
||||
"""
|
||||
Store the definition of the pipeline DAG into a dictionary.
|
||||
This dictionary will be used to store the DAG as a configuration on the Task
|
||||
:return:
|
||||
"""
|
||||
dag = {name: dict((k, v) for k, v in node.__dict__.items() if k not in ('job', 'name'))
|
||||
for name, node in self._nodes.items()}
|
||||
|
||||
return dag
|
||||
|
||||
def _deserialize(self, dag_dict):
|
||||
# type: (dict) -> ()
|
||||
"""
|
||||
Restore the DAG from a dictionary.
|
||||
This will be used to create the DAG from the dict stored on the Task, when running remotely.
|
||||
:return:
|
||||
"""
|
||||
self._nodes = {k: self.Node(name=k, **v) for k, v in dag_dict.items()}
|
||||
|
||||
def _verify(self):
|
||||
# type: () -> bool
|
||||
"""
|
||||
Verify the DAG, (i.e. no cycles and no missing parents)
|
||||
On error raise ValueError with verification details
|
||||
|
||||
:return: return True iff DAG has no errors
|
||||
"""
|
||||
# verify nodes
|
||||
for node in self._nodes.values():
|
||||
# raise value error if not verified
|
||||
self._verify_node(node)
|
||||
|
||||
# check the dag itself
|
||||
if not self._verify_dag():
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _verify_node(self, node):
|
||||
# type: (Node) -> bool
|
||||
"""
|
||||
Raise ValueError on verification errors
|
||||
|
||||
:return: Return True iff the specific node is verified
|
||||
"""
|
||||
if not node.base_task_id:
|
||||
raise ValueError("Node '{}', base_task_id is empty".format(node.name))
|
||||
|
||||
if not self._default_execution_queue and not node.queue:
|
||||
raise ValueError("Node '{}' missing execution queue, "
|
||||
"no default queue defined and no specific node queue defined".format(node.name))
|
||||
|
||||
task = Task.get_task(task_id=node.base_task_id)
|
||||
if not task:
|
||||
raise ValueError("Node '{}', base_task_id={} is invalid".format(node.name, node.base_task_id))
|
||||
|
||||
pattern = self._step_ref_pattern
|
||||
|
||||
for v in node.parameters.values():
|
||||
for g in pattern.findall(v):
|
||||
self.__verify_step_reference(node, g)
|
||||
|
||||
return True
|
||||
|
||||
def _verify_dag(self):
|
||||
# type: () -> bool
|
||||
"""
|
||||
:return: True iff the pipeline dag is fully accessible and contains no cycles
|
||||
"""
|
||||
visited = set()
|
||||
prev_visited = None
|
||||
while prev_visited != visited:
|
||||
prev_visited = copy(visited)
|
||||
for k, node in self._nodes.items():
|
||||
if k in visited:
|
||||
continue
|
||||
if not all(p in visited for p in node.parents or []):
|
||||
continue
|
||||
visited.add(k)
|
||||
# return False if we did not cover all the nodes
|
||||
return not bool(set(self._nodes.keys()) - visited)
|
||||
|
||||
def _launch_node(self, node):
|
||||
# type: (Node) -> ()
|
||||
"""
|
||||
Launch a single node (create and enqueue a TrainsJob)
|
||||
|
||||
:param node: Node to launch
|
||||
:return: Return True if a new job was launched
|
||||
"""
|
||||
if node.job or node.executed:
|
||||
return False
|
||||
|
||||
updated_hyper_parameters = {}
|
||||
for k, v in node.parameters.items():
|
||||
updated_hyper_parameters[k] = self._parse_step_ref(v)
|
||||
|
||||
node.job = TrainsJob(
|
||||
base_task_id=node.base_task_id, parameter_override=updated_hyper_parameters,
|
||||
parent=self._task.id)
|
||||
if self._experiment_created_cb:
|
||||
self._experiment_created_cb(node, updated_hyper_parameters)
|
||||
node.job.launch(queue_name=node.queue or self._default_execution_queue)
|
||||
return True
|
||||
|
||||
def _update_execution_plot(self):
|
||||
# type: () -> ()
|
||||
"""
|
||||
Update sankey diagram of the current pipeline
|
||||
"""
|
||||
sankey_node = dict(
|
||||
label=[],
|
||||
color=[],
|
||||
hovertemplate='%{label}<extra></extra>',
|
||||
# customdata=[],
|
||||
# hovertemplate='%{label}<br />Hyper-Parameters:<br />%{customdata}<extra></extra>',
|
||||
)
|
||||
sankey_link = dict(
|
||||
source=[],
|
||||
target=[],
|
||||
value=[],
|
||||
hovertemplate='%{target.label}<extra></extra>',
|
||||
)
|
||||
visited = []
|
||||
node_params = []
|
||||
nodes = list(self._nodes.values())
|
||||
while nodes:
|
||||
next_nodes = []
|
||||
for node in nodes:
|
||||
if not all(p in visited for p in node.parents or []):
|
||||
next_nodes.append(node)
|
||||
continue
|
||||
visited.append(node.name)
|
||||
idx = len(visited) - 1
|
||||
parents = [visited.index(p) for p in node.parents or []]
|
||||
node_params.append(node.job.task_parameter_override if node.job else node.parameters) or {}
|
||||
# sankey_node['label'].append(node.name)
|
||||
# sankey_node['customdata'].append(
|
||||
# '<br />'.join('{}: {}'.format(k, v) for k, v in (node.parameters or {}).items()))
|
||||
sankey_node['label'].append(
|
||||
'{}<br />'.format(node.name) +
|
||||
'<br />'.join('{}: {}'.format(k, v) for k, v in (node.parameters or {}).items()))
|
||||
sankey_node['color'].append(
|
||||
("blue" if not node.job or not node.job.is_failed() else "red")
|
||||
if node.executed else ("green" if node.job else "lightsteelblue"))
|
||||
|
||||
for p in parents:
|
||||
sankey_link['source'].append(p)
|
||||
sankey_link['target'].append(idx)
|
||||
sankey_link['value'].append(1)
|
||||
|
||||
nodes = next_nodes
|
||||
|
||||
# make sure we have no independent (unconnected) nodes
|
||||
for i in [n for n in range(len(visited)) if n not in sankey_link['source'] and n not in sankey_link['target']]:
|
||||
sankey_link['source'].append(i)
|
||||
sankey_link['target'].append(i)
|
||||
sankey_link['value'].append(0.1)
|
||||
|
||||
fig = make_subplots(
|
||||
rows=2, cols=1,
|
||||
shared_xaxes=True,
|
||||
vertical_spacing=0.03,
|
||||
specs=[[{"type": "table"}],
|
||||
[{"type": "sankey"}], ]
|
||||
)
|
||||
# noinspection PyUnresolvedReferences
|
||||
fig.add_trace(
|
||||
go.Sankey(
|
||||
node=sankey_node, link=sankey_link, textfont=dict(color='rgba(0,0,0,0)', size=1)
|
||||
),
|
||||
row=1, col=1
|
||||
)
|
||||
# noinspection PyUnresolvedReferences
|
||||
fig.add_trace(
|
||||
go.Table(
|
||||
header=dict(
|
||||
values=["Pipeline Step", "Task ID", "Parameters"],
|
||||
align="left",
|
||||
),
|
||||
cells=dict(
|
||||
values=[visited,
|
||||
[self._nodes[v].executed or (self._nodes[v].job.task_id() if self._nodes[v].job else '')
|
||||
for v in visited],
|
||||
[str(p) for p in node_params]],
|
||||
align="left")
|
||||
),
|
||||
row=2, col=1
|
||||
)
|
||||
|
||||
# fig = go.Figure(data=[go.Sankey(
|
||||
# node=sankey_node, link=sankey_link, textfont=dict(color='rgba(0,0,0,0)', size=1))],)
|
||||
self._task.get_logger().report_plotly(
|
||||
title='Pipeline', series='execution flow', iteration=0, figure=fig)
|
||||
|
||||
def _force_task_configuration_update(self):
|
||||
pipeline_dag = self._serialize()
|
||||
# noinspection PyProtectedMember
|
||||
self._task._set_configuration(
|
||||
name=self._config_section, config_type='dictionary', config_dict=pipeline_dag)
|
||||
|
||||
def _daemon(self):
|
||||
# type: () -> ()
|
||||
"""
|
||||
The main pipeline execution loop. This loop is executed on its own dedicated thread.
|
||||
:return:
|
||||
"""
|
||||
pooling_counter = 0
|
||||
|
||||
while self._stop_event:
|
||||
# stop request
|
||||
if pooling_counter and self._stop_event.wait(self._pool_frequency):
|
||||
break
|
||||
|
||||
pooling_counter += 1
|
||||
|
||||
# check the pipeline time limit
|
||||
if self._pipeline_time_limit and (time() - self._start_time) > self._pipeline_time_limit:
|
||||
break
|
||||
|
||||
# check the state of all current jobs
|
||||
# if no a job ended, continue
|
||||
completed_jobs = []
|
||||
for j in self._running_nodes:
|
||||
node = self._nodes[j]
|
||||
if not node.job:
|
||||
continue
|
||||
if node.job.is_stopped():
|
||||
completed_jobs.append(j)
|
||||
node.executed = node.job.task_id()
|
||||
elif node.timeout:
|
||||
started = node.job.task.data.started
|
||||
if (datetime.now().astimezone(started.tzinfo) - started).total_seconds() > node.timeout:
|
||||
node.job.abort()
|
||||
completed_jobs.append(j)
|
||||
node.executed = node.job.task_id()
|
||||
|
||||
# update running jobs
|
||||
self._running_nodes = [j for j in self._running_nodes if j not in completed_jobs]
|
||||
|
||||
# nothing changed, we can sleep
|
||||
if not completed_jobs and self._running_nodes:
|
||||
continue
|
||||
|
||||
# Pull the next jobs in the pipeline, based on the completed list
|
||||
next_nodes = []
|
||||
for node in self._nodes.values():
|
||||
# check if already processed.
|
||||
if node.job or node.executed:
|
||||
continue
|
||||
completed_parents = [bool(p in self._nodes and self._nodes[p].executed) for p in node.parents or []]
|
||||
if all(completed_parents):
|
||||
next_nodes.append(node.name)
|
||||
|
||||
# update the execution graph
|
||||
for name in next_nodes:
|
||||
if self._launch_node(self._nodes[name]):
|
||||
print('Launching step: {}'.format(name))
|
||||
print('Parameters:\n{}'.format(self._nodes[name].job.task_parameter_override))
|
||||
self._running_nodes.append(name)
|
||||
else:
|
||||
getLogger('trains.automation.controller').error(
|
||||
'ERROR: Failed launching step \'{}\': {}'.format(name, self._nodes[name]))
|
||||
|
||||
# update current state (in configuration, so that we could later continue an aborted pipeline)
|
||||
self._force_task_configuration_update()
|
||||
|
||||
# visualize pipeline state (plot)
|
||||
self._update_execution_plot()
|
||||
|
||||
# quit if all pipelines nodes are fully executed.
|
||||
if not next_nodes and not self._running_nodes:
|
||||
break
|
||||
|
||||
# stop all currently running jobs:
|
||||
for node in self._nodes.values():
|
||||
if node.job and not node.executed:
|
||||
node.job.abort()
|
||||
|
||||
if self._stop_event:
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
self._stop_event.set()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def __verify_step_reference(self, node, step_ref_string):
|
||||
# type: (Node, str) -> bool
|
||||
"""
|
||||
Verify the step reference. For example "${step1.parameters.Args/param}"
|
||||
:param Node node: calling reference node (used for logging)
|
||||
:param str step_ref_string: For example "${step1.parameters.Args/param}"
|
||||
:return: True if valid reference
|
||||
"""
|
||||
parts = step_ref_string[2:-1].split('.')
|
||||
v = step_ref_string
|
||||
if len(parts) < 2:
|
||||
raise ValueError("Node '{}', parameter '{}' is invalid".format(node.name, v))
|
||||
prev_step = parts[0]
|
||||
input_type = parts[1]
|
||||
if prev_step not in self._nodes:
|
||||
raise ValueError("Node '{}', parameter '{}', step name '{}' is invalid".format(node.name, v, prev_step))
|
||||
if input_type not in ('artifacts', 'parameters', 'models', 'id'):
|
||||
raise ValueError(
|
||||
"Node {}, parameter '{}', input type '{}' is invalid".format(node.name, v, input_type))
|
||||
|
||||
if input_type != 'id' and len(parts) < 3:
|
||||
raise ValueError("Node '{}', parameter '{}' is invalid".format(node.name, v))
|
||||
|
||||
if input_type == 'models':
|
||||
try:
|
||||
model_type = parts[2].lower()
|
||||
except Exception:
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', model_type is missing {}".format(
|
||||
node.name, v, input_type, parts))
|
||||
if model_type not in ('input', 'output'):
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', "
|
||||
"model_type is invalid (input/output) found {}".format(
|
||||
node.name, v, input_type, model_type))
|
||||
|
||||
if len(parts) < 4:
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', model index is missing".format(
|
||||
node.name, v, input_type))
|
||||
|
||||
# check casting
|
||||
try:
|
||||
int(parts[3])
|
||||
except Exception:
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', model index is missing {}".format(
|
||||
node.name, v, input_type, parts))
|
||||
|
||||
if len(parts) < 5:
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', model property is missing".format(
|
||||
node.name, v, input_type))
|
||||
|
||||
if not hasattr(BaseModel, parts[4]):
|
||||
raise ValueError(
|
||||
"Node '{}', parameter '{}', input type '{}', model property is invalid {}".format(
|
||||
node.name, v, input_type, parts[4]))
|
||||
return True
|
||||
|
||||
def __parse_step_reference(self, step_ref_string):
|
||||
"""
|
||||
return the adjusted value for "${step...}"
|
||||
:param step_ref_string: reference string of the form ${step_name.type.value}"
|
||||
:return: str with value
|
||||
"""
|
||||
parts = step_ref_string[2:-1].split('.')
|
||||
if len(parts) < 2:
|
||||
raise ValueError("Could not parse reference '{}'".format(step_ref_string))
|
||||
prev_step = parts[0]
|
||||
input_type = parts[1].lower()
|
||||
if prev_step not in self._nodes or not self._nodes[prev_step].job:
|
||||
raise ValueError("Could not parse reference '{}', step {} could not be found".format(
|
||||
step_ref_string, prev_step))
|
||||
if input_type not in ('artifacts', 'parameters', 'models', 'id'):
|
||||
raise ValueError("Could not parse reference '{}', type {} not valid".format(step_ref_string, input_type))
|
||||
if input_type != 'id' and len(parts) < 3:
|
||||
raise ValueError("Could not parse reference '{}', missing fields in {}".format(step_ref_string, parts))
|
||||
|
||||
task = self._nodes[prev_step].job.task if self._nodes[prev_step].job \
|
||||
else Task.get_task(task_id=self._nodes[prev_step].executed)
|
||||
task.reload()
|
||||
if input_type == 'artifacts':
|
||||
# fix \. to use . in artifacts
|
||||
artifact_path = ('.'.join(parts[2:])).replace('\\.', '\\_dot_\\')
|
||||
artifact_path = artifact_path.split('.')
|
||||
|
||||
obj = task.artifacts
|
||||
for p in artifact_path:
|
||||
p = p.replace('\\_dot_\\', '.')
|
||||
if isinstance(obj, dict):
|
||||
obj = obj.get(p)
|
||||
elif hasattr(obj, p):
|
||||
obj = getattr(obj, p)
|
||||
else:
|
||||
raise ValueError("Could not locate artifact {} on previous step {}".format(
|
||||
'.'.join(parts[1:]), prev_step))
|
||||
return str(obj)
|
||||
elif input_type == 'parameters':
|
||||
step_params = task.get_parameters()
|
||||
param_name = '.'.join(parts[2:])
|
||||
if param_name not in step_params:
|
||||
raise ValueError("Could not locate parameter {} on previous step {}".format(
|
||||
'.'.join(parts[1:]), prev_step))
|
||||
return step_params.get(param_name)
|
||||
elif input_type == 'models':
|
||||
model_type = parts[2].lower()
|
||||
if model_type not in ('input', 'output'):
|
||||
raise ValueError("Could not locate model {} on previous step {}".format(
|
||||
'.'.join(parts[1:]), prev_step))
|
||||
try:
|
||||
model_idx = int(parts[3])
|
||||
model = task.models[model_type][model_idx]
|
||||
except Exception:
|
||||
raise ValueError("Could not locate model {} on previous step {}, index {} is invalid".format(
|
||||
'.'.join(parts[1:]), prev_step, parts[3]))
|
||||
|
||||
return str(getattr(model, parts[4]))
|
||||
|
||||
elif input_type == 'id':
|
||||
return task.id
|
||||
return None
|
||||
|
||||
def _parse_step_ref(self, value):
|
||||
# type: (str) -> Optional[str]
|
||||
"""
|
||||
Return the step reference. For example "${step1.parameters.Args/param}"
|
||||
:param value: string
|
||||
:return:
|
||||
"""
|
||||
# look for all the step references
|
||||
pattern = self._step_ref_pattern
|
||||
updated_value = value
|
||||
for g in pattern.findall(value):
|
||||
# update with actual value
|
||||
new_val = self.__parse_step_reference(g)
|
||||
updated_value = updated_value.replace(g, new_val, 1)
|
||||
return updated_value
|
@ -384,7 +384,7 @@ class PatchedMatplotlib:
|
||||
_pylab_helpers.Gcf.set_active(stored_figure)
|
||||
|
||||
# get the main task
|
||||
reporter = PatchedMatplotlib._current_task._reporter
|
||||
reporter = PatchedMatplotlib._current_task.__reporter
|
||||
if reporter is not None:
|
||||
if mpl_fig.texts:
|
||||
plot_title = mpl_fig.texts[0].get_text()
|
||||
|
@ -383,7 +383,7 @@ class Task(_Task):
|
||||
logger.set_flush_period(None)
|
||||
# create a new logger (to catch stdout/err)
|
||||
cls.__main_task._logger = None
|
||||
cls.__main_task._reporter = None
|
||||
cls.__main_task.__reporter = None
|
||||
cls.__main_task.get_logger()
|
||||
cls.__main_task._artifacts_manager = Artifacts(cls.__main_task)
|
||||
# unregister signal hooks, they cause subprocess to hang
|
||||
@ -1165,8 +1165,8 @@ class Task(_Task):
|
||||
if self._logger:
|
||||
# noinspection PyProtectedMember
|
||||
self._logger._flush_stdout_handler()
|
||||
if self._reporter:
|
||||
self._reporter.flush()
|
||||
if self.__reporter:
|
||||
self.__reporter.flush()
|
||||
LoggerRoot.flush()
|
||||
|
||||
return True
|
||||
@ -1435,7 +1435,7 @@ class Task(_Task):
|
||||
:return: The last reported iteration number.
|
||||
"""
|
||||
self._reload_last_iteration()
|
||||
return max(self.data.last_iteration or 0, self._reporter.max_iteration if self._reporter else 0)
|
||||
return max(self.data.last_iteration or 0, self.__reporter.max_iteration if self.__reporter else 0)
|
||||
|
||||
def set_initial_iteration(self, offset=0):
|
||||
# type: (int) -> int
|
||||
@ -2406,15 +2406,15 @@ class Task(_Task):
|
||||
# wait for uploads
|
||||
print_done_waiting = False
|
||||
if wait_for_uploads and (BackendModel.get_num_results() > 0 or
|
||||
(self._reporter and self._reporter.get_num_results() > 0)):
|
||||
(self.__reporter and self.__reporter.get_num_results() > 0)):
|
||||
self.log.info('Waiting to finish uploads')
|
||||
print_done_waiting = True
|
||||
# from here, do not send log in background thread
|
||||
if wait_for_uploads:
|
||||
self.flush(wait_for_uploads=True)
|
||||
# wait until the reporter flush everything
|
||||
if self._reporter:
|
||||
self._reporter.stop()
|
||||
if self.__reporter:
|
||||
self.__reporter.stop()
|
||||
if self.is_main_task():
|
||||
# notice: this will close the reporting for all the Tasks in the system
|
||||
Metrics.close_async_threads()
|
||||
|
Loading…
Reference in New Issue
Block a user