Fix jsonargparse support (#403)

This commit is contained in:
allegroai
2022-03-29 11:00:33 +03:00
parent ae734c81e7
commit 95785e7637
7 changed files with 164 additions and 82 deletions

View File

@@ -11,5 +11,5 @@ class Main:
if __name__ == "__main__":
Task.init(project_name="examples", task_name="jsonargparse command", auto_connect_frameworks={"pytorch_lightning": False})
Task.init(project_name="examples", task_name="jsonargparse command")
print(CLI(Main))

View File

@@ -10,7 +10,7 @@ class Arg2:
if __name__ == "__main__":
Task.init(project_name="examples", task_name="jsonargparse nested namespaces", auto_connect_frameworks={"pytorch-lightning": False})
Task.init(project_name="examples", task_name="jsonargparse nested namespaces")
parser = ArgumentParser()
parser.add_argument("--arg1.opt1", default="from default 1")
parser.add_argument("--arg1.opt2", default="from default 2")

View File

@@ -0,0 +1,103 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Notice that this file has been modified to examplify the use of
# ClearML when used with PyTorch Lightning
import torch
import torchvision.transforms as T
from torch.nn import functional as F
import torch.nn as nn
from torchmetrics import Accuracy
from torchvision.datasets.mnist import MNIST
from pytorch_lightning import LightningModule
from pytorch_lightning.utilities.cli import LightningCLI
from clearml import Task
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class ImageClassifier(LightningModule):
def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
super().__init__()
self.save_hyperparameters(ignore="model")
self.model = model or Net()
self.test_acc = Accuracy()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
self.test_acc(logits, y)
self.log("test_acc", self.test_acc)
self.log("test_loss", loss)
def configure_optimizers(self):
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
@property
def transform(self):
return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
def prepare_data(self) -> None:
MNIST("./data", download=True)
def train_dataloader(self):
train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
def test_dataloader(self):
test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
if __name__ == "__main__":
Task.add_requirements('requirements.txt')
task = Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
LightningCLI(ImageClassifier, seed_everything_default=42, save_config_overwrite=True, run=True)

View File

@@ -0,0 +1,12 @@
trainer:
callbacks:
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
init_args:
filename: best
save_last: False
save_top_k: 1
monitor: loss
mode: min

View File

@@ -1,2 +1,7 @@
clearml
jsonargparse
jsonargparse
pytorch_lightning
torch
torchmetrics
torchvision
docstring_parser