Fix jsonargparse support (#403)

This commit is contained in:
allegroai 2022-03-29 11:00:33 +03:00
parent ae734c81e7
commit 95785e7637
7 changed files with 164 additions and 82 deletions

View File

@ -1,5 +1,5 @@
import ast
import copy
import six
try:
from jsonargparse import ArgumentParser
@ -9,6 +9,7 @@ except ImportError:
from ..config import running_remotely, get_remote_task_id
from .frameworks import _patched_call # noqa
from ..utilities.proxy_object import flatten_dictionary
class PatchJsonArgParse(object):
@ -55,38 +56,45 @@ class PatchJsonArgParse(object):
try:
PatchJsonArgParse._load_task_params()
params = PatchJsonArgParse.__remote_task_params_dict
params_namespace = Namespace()
for k, v in params.items():
if v == '':
if v == "":
v = None
# noinspection PyBroadException
try:
v = ast.literal_eval(v)
except Exception:
pass
params[k] = v
params = PatchJsonArgParse.__unflatten_dict(params)
params = PatchJsonArgParse.__nested_dict_to_namespace(params)
return params
params_namespace[k] = PatchJsonArgParse.__namespace_eval(v)
return params_namespace
except Exception:
return original_fn(obj, **kwargs)
orig_parsed_args = original_fn(obj, **kwargs)
parsed_args = original_fn(obj, **kwargs)
# noinspection PyBroadException
try:
parsed_args = vars(copy.deepcopy(orig_parsed_args))
for ns_name, ns_val in parsed_args.items():
if not isinstance(ns_val, (Namespace, list)):
PatchJsonArgParse._args[ns_name] = str(ns_val)
if ns_name == PatchJsonArgParse._command_name:
PatchJsonArgParse._args_type[ns_name] = PatchJsonArgParse._command_type
else:
ns_val = PatchJsonArgParse.__nested_namespace_to_dict(ns_val)
ns_val = PatchJsonArgParse.__flatten_dict(ns_val, parent_name=ns_name)
for k, v in ns_val.items():
PatchJsonArgParse._args[k] = str(v)
subcommand = None
for ns_name, ns_val in Namespace(parsed_args).items():
PatchJsonArgParse._args[ns_name] = ns_val
if ns_name == PatchJsonArgParse._command_name:
PatchJsonArgParse._args_type[ns_name] = PatchJsonArgParse._command_type
subcommand = ns_val
try:
import pytorch_lightning
except ImportError:
pytorch_lightning = None
if subcommand and subcommand in PatchJsonArgParse._args and pytorch_lightning:
subcommand_args = flatten_dictionary(
PatchJsonArgParse._args[subcommand],
prefix=subcommand + PatchJsonArgParse._commands_sep,
sep=PatchJsonArgParse._commands_sep,
)
del PatchJsonArgParse._args[subcommand]
PatchJsonArgParse._args.update(subcommand_args)
PatchJsonArgParse._args = {k: str(v) for k, v in PatchJsonArgParse._args.items()}
PatchJsonArgParse._update_task_args()
except Exception:
pass
return orig_parsed_args
return parsed_args
@staticmethod
def _load_task_params():
@ -105,62 +113,15 @@ class PatchJsonArgParse(object):
}
@staticmethod
def __nested_namespace_to_dict(namespace):
if isinstance(namespace, list):
return [PatchJsonArgParse.__nested_namespace_to_dict(n) for n in namespace]
if not isinstance(namespace, Namespace):
return namespace
namespace = vars(namespace)
for k, v in namespace.items():
namespace[k] = PatchJsonArgParse.__nested_namespace_to_dict(v)
return namespace
@staticmethod
def __nested_dict_to_namespace(dict_):
if isinstance(dict_, list):
return [PatchJsonArgParse.__nested_dict_to_namespace(d) for d in dict_]
if not isinstance(dict_, dict):
return dict_
for k, v in dict_.items():
dict_[k] = PatchJsonArgParse.__nested_dict_to_namespace(v)
return Namespace(**dict_)
@staticmethod
def __flatten_dict(dict_, parent_name=None):
if isinstance(dict_, list):
if parent_name:
return {parent_name: [PatchJsonArgParse.__flatten_dict(d) for d in dict_]}
return [PatchJsonArgParse.__flatten_dict(d) for d in dict_]
if not isinstance(dict_, dict):
if parent_name:
return {parent_name: dict_}
return dict_
result = {}
for k, v in dict_.items():
v = PatchJsonArgParse.__flatten_dict(v, parent_name=k)
if isinstance(v, dict):
for flattened_k, flattened_v in v.items():
if parent_name:
result[parent_name + PatchJsonArgParse._commands_sep + flattened_k] = flattened_v
else:
result[flattened_k] = flattened_v
else:
result[k] = v
return result
@staticmethod
def __unflatten_dict(dict_):
if isinstance(dict_, list):
return [PatchJsonArgParse.__unflatten_dict(d) for d in dict_]
if not isinstance(dict_, dict):
return dict_
result = {}
for k, v in dict_.items():
keys = k.split(PatchJsonArgParse._commands_sep)
current_dict = result
for k_part in keys[:-1]:
if k_part not in current_dict:
current_dict[k_part] = {}
current_dict = current_dict[k_part]
current_dict[keys[-1]] = PatchJsonArgParse.__unflatten_dict(v)
return result
def __namespace_eval(val):
if isinstance(val, six.string_types) and val.startswith("Namespace(") and val[-1] == ")":
val = val[len("Namespace("):]
val = val[:-1]
return Namespace(PatchJsonArgParse.__namespace_eval(ast.literal_eval("{" + val + "}")))
if isinstance(val, list):
return [PatchJsonArgParse.__namespace_eval(v) for v in val]
if isinstance(val, dict):
for k, v in val.items():
val[k] = PatchJsonArgParse.__namespace_eval(v)
return val
return val

View File

@ -328,7 +328,8 @@ class Task(_Task):
`ClearML Python Client Extras <./references/clearml_extras_storage/>`_ in the "ClearML Python Client
Reference" section.
:param auto_connect_arg_parser: Automatically connect an argparse object to the Task
:param auto_connect_arg_parser: Automatically connect an argparse object to the Task. Supported argument
parsers packages are: argparse, click, python-fire, jsonargparse.
The values are:

View File

@ -11,5 +11,5 @@ class Main:
if __name__ == "__main__":
Task.init(project_name="examples", task_name="jsonargparse command", auto_connect_frameworks={"pytorch_lightning": False})
Task.init(project_name="examples", task_name="jsonargparse command")
print(CLI(Main))

View File

@ -10,7 +10,7 @@ class Arg2:
if __name__ == "__main__":
Task.init(project_name="examples", task_name="jsonargparse nested namespaces", auto_connect_frameworks={"pytorch-lightning": False})
Task.init(project_name="examples", task_name="jsonargparse nested namespaces")
parser = ArgumentParser()
parser.add_argument("--arg1.opt1", default="from default 1")
parser.add_argument("--arg1.opt2", default="from default 2")

View File

@ -0,0 +1,103 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Notice that this file has been modified to examplify the use of
# ClearML when used with PyTorch Lightning
import torch
import torchvision.transforms as T
from torch.nn import functional as F
import torch.nn as nn
from torchmetrics import Accuracy
from torchvision.datasets.mnist import MNIST
from pytorch_lightning import LightningModule
from pytorch_lightning.utilities.cli import LightningCLI
from clearml import Task
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class ImageClassifier(LightningModule):
def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
super().__init__()
self.save_hyperparameters(ignore="model")
self.model = model or Net()
self.test_acc = Accuracy()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
self.test_acc(logits, y)
self.log("test_acc", self.test_acc)
self.log("test_loss", loss)
def configure_optimizers(self):
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
@property
def transform(self):
return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
def prepare_data(self) -> None:
MNIST("./data", download=True)
def train_dataloader(self):
train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
def test_dataloader(self):
test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
if __name__ == "__main__":
Task.add_requirements('requirements.txt')
task = Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
LightningCLI(ImageClassifier, seed_everything_default=42, save_config_overwrite=True, run=True)

View File

@ -0,0 +1,12 @@
trainer:
callbacks:
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
init_args:
filename: best
save_last: False
save_top_k: 1
monitor: loss
mode: min

View File

@ -1,2 +1,7 @@
clearml
jsonargparse
jsonargparse
pytorch_lightning
torch
torchmetrics
torchvision
docstring_parser