mirror of
				https://github.com/clearml/clearml
				synced 2025-06-26 18:16:07 +00:00 
			
		
		
		
	Update tabular example scripts for the ML pipeline blog
This commit is contained in:
		
							parent
							
								
									8ec6bba4d9
								
							
						
					
					
						commit
						519677d987
					
				| @ -0,0 +1,135 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "! pip install -U pip\n", | ||||
|     "! pip install -U trains==0.16.2rc0\n", | ||||
|     "! pip install -U pandas==1.0.4\n", | ||||
|     "! pip install -U scikit-learn==0.23.1\n", | ||||
|     "! pip install -U pathlib2==2.3.5" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import pandas as pd\n", | ||||
|     "from pathlib2 import Path\n", | ||||
|     "from sklearn.model_selection import train_test_split\n", | ||||
|     "\n", | ||||
|     "from trains import Task" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Tabular Example', task_name='Download and split tabular dataset')\n", | ||||
|     "logger = task.get_logger()\n", | ||||
|     "configuration_dict = {'test_size': 0.1, 'split_random_state': 0}\n", | ||||
|     "configuration_dict = task.connect(configuration_dict)  # enabling configuration override by trains\n", | ||||
|     "print(configuration_dict)  # printing actual configuration (after override in remote mode)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# **Downloading**" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Download the shelter-animal-outcomes dataset (https://www.kaggle.com/c/shelter-animal-outcomes)\n", | ||||
|     "# and save it to your cloud storage or your mounted local storage\n", | ||||
|     "# If the data is on your cloud storage, you can use trains' storage manager to get a local copy of it:\n", | ||||
|     "#    from trains.storage import StorageManager\n", | ||||
|     "#    path_to_ShelterAnimal = StorageManager.get_local_copy(\"https://allegro-datasets.s3.amazonaws.com/trains/UrbanSound8K.zip\", \n", | ||||
|     "#                                                          extract_archive=True)\n", | ||||
|     "path_to_ShelterAnimal = '/home/sam/Datasets/shelter-animal-outcomes'" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "train_set = pd.read_csv(Path(path_to_ShelterAnimal) / 'train.csv')\n", | ||||
|     "logger.report_table(title='Trainset - raw',series='pandas DataFrame',iteration=0, table_plot=train_set.head())" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# **Splitting to train and val**" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "X = train_set.drop(columns= ['OutcomeType'])\n", | ||||
|     "Y = train_set['OutcomeType']\n", | ||||
|     "X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size=configuration_dict.get('test_size', 0.1), \n", | ||||
|     "                                                  random_state=configuration_dict.get('split_random_state', 0))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "train_df = X_train.join(Y_train)\n", | ||||
|     "val_df = X_val.join(Y_val)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task.upload_artifact('train_data', artifact_object=train_df)\n", | ||||
|     "task.upload_artifact('val_data', artifact_object=val_df)" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.7.4" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
| @ -0,0 +1,96 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "! pip install -U pip\n", | ||||
|     "! pip install -U trains==0.16.2rc0" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "from trains import Task, OutputModel" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Tabular Example', task_name='pick best model')\n", | ||||
|     "configuration_dict = {'train_tasks_ids': ['c9bff3d15309487a9e5aaa00358ff091', 'c9bff3d15309487a9e5aaa00358ff091']}\n", | ||||
|     "configuration_dict = task.connect(configuration_dict)  # enabling configuration override by trains\n", | ||||
|     "print(configuration_dict)  # printing actual configuration (after override in remote mode)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "results = {}\n", | ||||
|     "for task_id in configuration_dict.get('train_tasks_ids'):\n", | ||||
|     "    train_task = Task.get_task(task_id)\n", | ||||
|     "    results[task_id] = train_task.get_last_scalar_metrics()['accuracy']['total']['last']" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "print(results)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "best_model_task_id = max(results.items(), key=lambda x: x[1])[0]\n", | ||||
|     "best_model_id = Task.get_task(best_model_task_id).output_model_id" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "OutputModel(base_model_id=best_model_id)" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.7.4" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
| @ -0,0 +1,300 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "! pip install -U pip\n", | ||||
|     "! pip install -U trains==0.16.2rc0\n", | ||||
|     "! pip install -U pandas==1.0.4\n", | ||||
|     "! pip install -U numpy==1.18.4" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import pandas as pd\n", | ||||
|     "import numpy as np\n", | ||||
|     "from collections import Counter\n", | ||||
|     "\n", | ||||
|     "from trains import Task" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Tabular Example', task_name='tabular preprocessing')\n", | ||||
|     "logger = task.get_logger()\n", | ||||
|     "configuration_dict = {'data_task_id': '39fbf86fc4a341359ac6df4aa70ff91b',\n", | ||||
|     "                      'fill_categorical_NA': True, 'fill_numerical_NA': True}\n", | ||||
|     "configuration_dict = task.connect(configuration_dict)  # enabling configuration override by trains\n", | ||||
|     "print(configuration_dict)  # printing actual configuration (after override in remote mode)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "data_task = Task.get_task(configuration_dict.get('data_task_id'))\n", | ||||
|     "train_set = data_task.artifacts['train_data'].get().drop(columns=['Unnamed: 0'])\n", | ||||
|     "val_set = data_task.artifacts['val_data'].get().drop(columns=['Unnamed: 0'])\n", | ||||
|     "logger.report_table(title='Trainset - raw',series='pandas DataFrame',iteration=0, table_plot=train_set.head())" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# **Pre-processing**" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Remove hour and year from DateTime data\n", | ||||
|     "def change_time_format(data_frame):\n", | ||||
|     "    timestamp = pd.to_datetime(data_frame['DateTime'])\n", | ||||
|     "    months = [d.month for d in timestamp]\n", | ||||
|     "    data_frame['Month'] = pd.DataFrame(months).astype('object')\n", | ||||
|     "    data_frame.drop(columns= ['DateTime'], inplace=True)\n", | ||||
|     "    return data_frame\n", | ||||
|     "\n", | ||||
|     "train_set = change_time_format(train_set)\n", | ||||
|     "val_set = change_time_format(val_set)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def change_age_format(data_frame):    \n", | ||||
|     "    age = data_frame['AgeuponOutcome']\n", | ||||
|     "    months_age = []\n", | ||||
|     "    for val in age:\n", | ||||
|     "        if pd.isnull(val):\n", | ||||
|     "            months_age.append(val)\n", | ||||
|     "        else:\n", | ||||
|     "            amount, time_type = val.split(' ')\n", | ||||
|     "            if 'day' in time_type:\n", | ||||
|     "                mult = 1./30\n", | ||||
|     "            if 'week' in time_type:\n", | ||||
|     "                mult = 1./4\n", | ||||
|     "            if 'month' in time_type:\n", | ||||
|     "                mult = 1.\n", | ||||
|     "            if 'year' in time_type:\n", | ||||
|     "                mult = 12.\n", | ||||
|     "            months_age.append(int(amount) * mult)\n", | ||||
|     "    data_frame['Age'] = pd.DataFrame(months_age).astype(np.float32)\n", | ||||
|     "    data_frame.drop(columns= ['AgeuponOutcome'], inplace=True)\n", | ||||
|     "    return data_frame\n", | ||||
|     "    \n", | ||||
|     "train_set = change_age_format(train_set)\n", | ||||
|     "val_set = change_age_format(val_set)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "def change_sex_format(data_frame): \n", | ||||
|     "    sex_neutered = data_frame['SexuponOutcome']\n", | ||||
|     "    sex = []\n", | ||||
|     "    neutered = []\n", | ||||
|     "    for val in sex_neutered:\n", | ||||
|     "        if pd.isnull(val):\n", | ||||
|     "            sex.append(val)\n", | ||||
|     "            neutered.append(val)\n", | ||||
|     "        elif 'Unknown' in val:\n", | ||||
|     "            sex.append(np.nan)\n", | ||||
|     "            neutered.append(np.nan)\n", | ||||
|     "        else:\n", | ||||
|     "            n, s = val.split(' ')\n", | ||||
|     "            if n in ['Neutered', 'Spayed']:\n", | ||||
|     "                neutered.append('Yes')\n", | ||||
|     "            else:\n", | ||||
|     "                neutered.append('No')\n", | ||||
|     "            sex.append(s)\n", | ||||
|     "\n", | ||||
|     "    data_frame['Sex'] = pd.DataFrame(sex)\n", | ||||
|     "    data_frame['Neutered'] = pd.DataFrame(neutered)\n", | ||||
|     "    data_frame.drop(columns= ['SexuponOutcome'], inplace=True)\n", | ||||
|     "    return data_frame\n", | ||||
|     "\n", | ||||
|     "train_set = change_sex_format(train_set)\n", | ||||
|     "val_set = change_sex_format(val_set)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Remove irrelevant columns\n", | ||||
|     "def remove_columns(data_frame, list_columns_names=None):\n", | ||||
|     "    if list_columns_names is not None:\n", | ||||
|     "        data_frame.drop(columns= list_columns_names, inplace=True)\n", | ||||
|     "    return data_frame\n", | ||||
|     "\n", | ||||
|     "train_set = remove_columns(train_set, ['Name', 'OutcomeSubtype', 'AnimalID'])\n", | ||||
|     "val_set = remove_columns(val_set, ['Name', 'OutcomeSubtype', 'AnimalID'])\n", | ||||
|     "\n", | ||||
|     "logger.report_table(title='Trainset - after preprocessing',series='pandas DataFrame',iteration=0, table_plot=train_set.head())" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## *Fill NA Values*" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "object_columns = train_set.select_dtypes(include=['object']).copy()\n", | ||||
|     "numerical_columns = train_set.select_dtypes(include=['number']).copy()" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "if configuration_dict.get('fill_categorical_NA', True):\n", | ||||
|     "    for col in object_columns.columns:\n", | ||||
|     "        if object_columns[col].isnull().sum() > 0:\n", | ||||
|     "            most_common = Counter(object_columns[col]).most_common(1)[0][0]\n", | ||||
|     "            print('Column \"{}\": replacing null values with \"{}\"'.format(col, most_common))\n", | ||||
|     "            train_set[col].fillna(most_common, inplace=True)\n", | ||||
|     "            val_set[col].fillna(most_common, inplace=True)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "if configuration_dict.get('fill_numerical_NA', True):\n", | ||||
|     "    for col in numerical_columns.columns:\n", | ||||
|     "        if numerical_columns[col].isnull().sum() > 0:\n", | ||||
|     "            median_val = numerical_columns[col].median()\n", | ||||
|     "            print('Column \"{}\": replacing null values with \"{}\"'.format(col, median_val))\n", | ||||
|     "            train_set[col].fillna(median_val, inplace=True)\n", | ||||
|     "            val_set[col].fillna(median_val, inplace=True)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Drop rows with NA values if were chosen not to be filled\n", | ||||
|     "train_set.dropna(inplace=True)\n", | ||||
|     "val_set.dropna(inplace=True)\n", | ||||
|     "if configuration_dict.get('fill_categorical_NA', True) or configuration_dict.get('fill_numerical_NA', True):\n", | ||||
|     "    logger.report_table(title='Trainset - after filling missing values',series='pandas DataFrame',iteration=0, table_plot=train_set.head())" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## *Labels Encoding*" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "all_data = pd.concat([train_set, val_set])\n", | ||||
|     "outcome_categories = all_data['OutcomeType'].astype('category').cat.categories\n", | ||||
|     "outcome_dict = {key: val for val,key in enumerate(outcome_categories)}\n", | ||||
|     "task.upload_artifact('Outcome dictionary', outcome_dict)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for col in object_columns.columns:\n", | ||||
|     "    all_data[col] = all_data[col].astype('category').cat.codes\n", | ||||
|     "train_set = all_data.iloc[:len(train_set.index), :]\n", | ||||
|     "val_set = all_data.iloc[len(train_set.index):, :]\n", | ||||
|     "logger.report_table(title='Trainset - after labels encoding',series='pandas DataFrame',iteration=0, table_plot=train_set.head())" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# making all variables categorical\n", | ||||
|     "object_columns_names = object_columns.drop(columns= ['OutcomeType']).columns\n", | ||||
|     "for col in object_columns_names:\n", | ||||
|     "    all_data[col] = all_data[col].astype('category')\n", | ||||
|     "columns_categries = {col: len(all_data[col].cat.categories) for col in object_columns_names}\n", | ||||
|     "task.upload_artifact('Categries per column', columns_categries)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task.upload_artifact('train_data', artifact_object=train_set)\n", | ||||
|     "task.upload_artifact('val_data', artifact_object=val_set)" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.7.4" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
| @ -0,0 +1,97 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# pip install with locked versions\n", | ||||
|     "! pip install -U pip\n", | ||||
|     "! pip install -U trains==0.16.2rc0" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "from trains import Task\n", | ||||
|     "from trains.automation.controller import PipelineController" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Tabular Example', task_name='tabular training pipeline', task_type=Task.TaskTypes.controller)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "pipe = PipelineController(default_execution_queue='dan_queue', add_pipeline_tags=True)\n", | ||||
|     "pipe.add_step(name='preprocessing_1', base_task_project='Tabular Example', base_task_name='tabular preprocessing',\n", | ||||
|     "              parameter_override={'General/data_task_id': '39fbf86fc4a341359ac6df4aa70ff91b',\n", | ||||
|     "                                  'General/fill_categorical_NA': 'True',\n", | ||||
|     "                                  'General/fill_numerical_NA': 'True'})\n", | ||||
|     "pipe.add_step(name='preprocessing_2', base_task_project='Tabular Example', base_task_name='tabular preprocessing',\n", | ||||
|     "              parameter_override={'General/data_task_id': '39fbf86fc4a341359ac6df4aa70ff91b',\n", | ||||
|     "                                  'General/fill_categorical_NA': 'False',\n", | ||||
|     "                                  'General/fill_numerical_NA': 'True'})\n", | ||||
|     "                                  \n", | ||||
|     "pipe.add_step(name='train_1', parents=['preprocessing_1'],\n", | ||||
|     "              base_task_project='Tabular Example', base_task_name='tabular prediction',\n", | ||||
|     "              parameter_override={'General/data_task_id': '${preprocessing_1.id}'})\n", | ||||
|     "pipe.add_step(name='train_2', parents=['preprocessing_2'],\n", | ||||
|     "              base_task_project='Tabular Example', base_task_name='tabular prediction',\n", | ||||
|     "              parameter_override={'General/data_task_id': '${preprocessing_2.id}'})\n", | ||||
|     "                                  \n", | ||||
|     "pipe.add_step(name='pick_best', parents=['train_1', 'train_2'],\n", | ||||
|     "              base_task_project='Tabular Example', base_task_name='pick best model',\n", | ||||
|     "              parameter_override={'General/train_tasks_ids': '[${train_1.id}, ${train_2.id}]'})                   " | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Starting the pipeline (in the background)\n", | ||||
|     "pipe.start()\n", | ||||
|     "# Wait until pipeline terminates\n", | ||||
|     "pipe.wait()\n", | ||||
|     "# cleanup everything\n", | ||||
|     "pipe.stop()" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.7.4" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 4 | ||||
| } | ||||
| @ -8,7 +8,7 @@ | ||||
|    "source": [ | ||||
|     "! pip install -U pip\n", | ||||
|     "! pip install -U torch==1.5.1\n", | ||||
|     "! pip install -U trains>=0.15.1\n", | ||||
|     "! pip install -U trains==0.16.2rc0\n", | ||||
|     "! pip install -U pandas==1.0.4\n", | ||||
|     "! pip install -U numpy==1.18.4\n", | ||||
|     "! pip install -U tensorboard==2.2.1" | ||||
| @ -38,9 +38,10 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Table Example', task_name='tabular prediction')\n", | ||||
|     "task = Task.init(project_name='Tabular Example', task_name='tabular prediction')\n", | ||||
|     "logger = task.get_logger()\n", | ||||
|     "configuration_dict = {'number_of_epochs': 30, 'batch_size': 100, 'dropout': 0.3, 'base_lr': 0.1}\n", | ||||
|     "configuration_dict = {'data_task_id': 'b605d76398f941e69fc91b43420151d2', \n", | ||||
|     "                      'number_of_epochs': 15, 'batch_size': 100, 'dropout': 0.3, 'base_lr': 0.1}\n", | ||||
|     "configuration_dict = task.connect(configuration_dict)  # enabling configuration override by trains\n", | ||||
|     "print(configuration_dict)  # printing actual configuration (after override in remote mode)" | ||||
|    ] | ||||
| @ -51,7 +52,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "previous_task = Task.get_task('ed7570e1e12d41e5a06557c81fdf1046')" | ||||
|     "data_task = Task.get_task(configuration_dict.get('data_task_id'))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -60,9 +61,8 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "preprocessed_data = previous_task.artifacts['Processed data'].get()\n", | ||||
|     "train_set = pd.read_csv(preprocessed_data['train_data'])\n", | ||||
|     "test_set = pd.read_csv(preprocessed_data['val_data'])" | ||||
|     "train_set = data_task.artifacts['train_data'].get().drop(columns=['Unnamed: 0'])\n", | ||||
|     "test_set = data_task.artifacts['val_data'].get().drop(columns=['Unnamed: 0'])" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -71,7 +71,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "columns_categories = previous_task.artifacts['Categries per column'].get()\n", | ||||
|     "columns_categories = data_task.artifacts['Categries per column'].get()\n", | ||||
|     "columns_categories_ordered = {key: columns_categories[key] for key in train_set.columns if key in columns_categories.keys()}\n", | ||||
|     "columns_numerical = [key for key in train_set.drop(columns= ['OutcomeType']).drop(columns=columns_categories_ordered).keys()]\n", | ||||
|     "embedding_sizes = [(n_categories, min(32, (n_categories+1)//2)) for _,n_categories in columns_categories_ordered.items()]" | ||||
| @ -83,7 +83,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "outcome_dict = previous_task.artifacts['Outcome dictionary'].get()\n", | ||||
|     "outcome_dict = data_task.artifacts['Outcome dictionary'].get()\n", | ||||
|     "reveresed_outcome_dict = {val: key for key, val in outcome_dict.items()}" | ||||
|    ] | ||||
|   }, | ||||
| @ -269,6 +269,17 @@ | ||||
|    "source": [ | ||||
|     "train_loop(model, epochs=configuration_dict.get('number_of_epochs', 30))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "PATH = './model_checkpoint.pth'\n", | ||||
|     "torch.save(model.state_dict(), PATH)\n", | ||||
|     "tensorboard_writer.close()" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 allegroai
						allegroai