clearml/examples/frameworks/kerastuner/keras_tuner_cifar.py

75 lines
2.4 KiB
Python
Raw Normal View History

2020-08-08 10:13:21 +00:00
"""Keras Tuner CIFAR10 example for the TensorFlow blog post."""
import kerastuner as kt
import tensorflow as tf
import tensorflow_datasets as tfds
2020-12-22 21:25:37 +00:00
from clearml.external.kerastuner import TrainsTunerLogger
2020-08-08 10:13:21 +00:00
2020-12-22 21:25:37 +00:00
from clearml import Task
2020-08-08 10:13:21 +00:00
physical_devices = tf.config.list_physical_devices('GPU')
if physical_devices:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
def build_model(hp):
inputs = tf.keras.Input(shape=(32, 32, 3))
x = inputs
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
for _ in range(2):
x = tf.keras.layers.Convolution2D(
filters, kernel_size=(3, 3), padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.ReLU()(x)
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
x = tf.keras.layers.MaxPool2D()(x)
else:
x = tf.keras.layers.AvgPool2D()(x)
x = tf.keras.layers.GlobalAvgPool2D()(x)
x = tf.keras.layers.Dense(
hp.Int('hidden_size', 30, 100, step=10, default=50),
activation='relu')(x)
x = tf.keras.layers.Dropout(
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
model = tf.keras.Model(inputs, outputs)
model.compile(
optimizer=tf.keras.optimizers.Adam(
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
task = Task.init('examples', 'kerastuner cifar10 tuning')
tuner = kt.Hyperband(
build_model,
project_name='kt examples',
logger=TrainsTunerLogger(),
objective='val_accuracy',
max_epochs=10,
hyperband_iterations=6)
data = tfds.load('cifar10')
train_ds, test_ds = data['train'], data['test']
def standardize_record(record):
return tf.cast(record['image'], tf.float32) / 255., record['label']
train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
test_ds = test_ds.map(standardize_record).cache().batch(64)
tuner.search(train_ds,
validation_data=test_ds,
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
tf.keras.callbacks.TensorBoard(),
])
best_model = tuner.get_best_models(1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]