mirror of
https://github.com/clearml/clearml
synced 2025-04-09 23:24:31 +00:00
Add Keras Tuner CIFAR10 example
This commit is contained in:
parent
6c4827cda3
commit
772fd7f750
74
examples/frameworks/kerastuner/keras_tuner_cifar.py
Normal file
74
examples/frameworks/kerastuner/keras_tuner_cifar.py
Normal file
@ -0,0 +1,74 @@
|
||||
"""Keras Tuner CIFAR10 example for the TensorFlow blog post."""
|
||||
|
||||
import kerastuner as kt
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
from trains.external.kerastuner import TrainsTunerLogger
|
||||
|
||||
from trains import Task
|
||||
|
||||
physical_devices = tf.config.list_physical_devices('GPU')
|
||||
if physical_devices:
|
||||
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||
|
||||
|
||||
def build_model(hp):
|
||||
inputs = tf.keras.Input(shape=(32, 32, 3))
|
||||
x = inputs
|
||||
for i in range(hp.Int('conv_blocks', 3, 5, default=3)):
|
||||
filters = hp.Int('filters_' + str(i), 32, 256, step=32)
|
||||
for _ in range(2):
|
||||
x = tf.keras.layers.Convolution2D(
|
||||
filters, kernel_size=(3, 3), padding='same')(x)
|
||||
x = tf.keras.layers.BatchNormalization()(x)
|
||||
x = tf.keras.layers.ReLU()(x)
|
||||
if hp.Choice('pooling_' + str(i), ['avg', 'max']) == 'max':
|
||||
x = tf.keras.layers.MaxPool2D()(x)
|
||||
else:
|
||||
x = tf.keras.layers.AvgPool2D()(x)
|
||||
x = tf.keras.layers.GlobalAvgPool2D()(x)
|
||||
x = tf.keras.layers.Dense(
|
||||
hp.Int('hidden_size', 30, 100, step=10, default=50),
|
||||
activation='relu')(x)
|
||||
x = tf.keras.layers.Dropout(
|
||||
hp.Float('dropout', 0, 0.5, step=0.1, default=0.5))(x)
|
||||
outputs = tf.keras.layers.Dense(10, activation='softmax')(x)
|
||||
|
||||
model = tf.keras.Model(inputs, outputs)
|
||||
model.compile(
|
||||
optimizer=tf.keras.optimizers.Adam(
|
||||
hp.Float('learning_rate', 1e-4, 1e-2, sampling='log')),
|
||||
loss='sparse_categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
task = Task.init('examples', 'kerastuner cifar10 tuning')
|
||||
|
||||
tuner = kt.Hyperband(
|
||||
build_model,
|
||||
project_name='kt examples',
|
||||
logger=TrainsTunerLogger(),
|
||||
objective='val_accuracy',
|
||||
max_epochs=10,
|
||||
hyperband_iterations=6)
|
||||
|
||||
data = tfds.load('cifar10')
|
||||
train_ds, test_ds = data['train'], data['test']
|
||||
|
||||
|
||||
def standardize_record(record):
|
||||
return tf.cast(record['image'], tf.float32) / 255., record['label']
|
||||
|
||||
|
||||
train_ds = train_ds.map(standardize_record).cache().batch(64).shuffle(10000)
|
||||
test_ds = test_ds.map(standardize_record).cache().batch(64)
|
||||
|
||||
tuner.search(train_ds,
|
||||
validation_data=test_ds,
|
||||
callbacks=[tf.keras.callbacks.EarlyStopping(patience=1),
|
||||
tf.keras.callbacks.TensorBoard(),
|
||||
])
|
||||
|
||||
best_model = tuner.get_best_models(1)[0]
|
||||
best_hyperparameters = tuner.get_best_hyperparameters(1)[0]
|
3
examples/frameworks/kerastuner/requirements.txt
Normal file
3
examples/frameworks/kerastuner/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
keras-tuner
|
||||
tensorflow>=2.0
|
||||
tensorflow-datasets
|
@ -39,5 +39,5 @@ task.connect_label_enumeration(labels)
|
||||
# storing the model, it will have the task network configuration and label enumeration
|
||||
print('Any model stored from this point onwards, will contain both model_config and label_enumeration')
|
||||
|
||||
torch.save(model, os.path.join(gettempdir(), "model"))
|
||||
torch.save(model, os.path.join(gettempdir(), "model.pt"))
|
||||
print('Model saved')
|
||||
|
@ -40,7 +40,6 @@ task.upload_artifact('pillow_image', im)
|
||||
task.upload_artifact('local folder', artifact_object=os.path.join('data_samples'))
|
||||
# add and upload a wildcard
|
||||
task.upload_artifact('wildcard jpegs', artifact_object=os.path.join('data_samples', '*.jpg'))
|
||||
|
||||
# do something here
|
||||
sleep(1.)
|
||||
print(df)
|
||||
|
Loading…
Reference in New Issue
Block a user