clearml/examples/frameworks/jsonargparse/pytorch_lightning_cli_old.py

115 lines
3.8 KiB
Python
Raw Normal View History

2023-05-11 12:59:11 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Notice that this file has been modified to examplify the use of
# ClearML when used with PyTorch Lightning
import sys
import torch
import torchvision.transforms as T
from torch.nn import functional as F
import torch.nn as nn
from torchmetrics import Accuracy
from torchvision.datasets.mnist import MNIST
from pytorch_lightning import LightningModule
from clearml import Task
try:
from pytorch_lightning.cli import LightningCLI
except ImportError:
try:
from pytorch_lightning.utilities.cli import LightningCLI
except ImportError:
print("Looks like you are using pytorch_lightning>=2.0. This example only works with older versions")
sys.exit(0)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class ImageClassifier(LightningModule):
def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
super().__init__()
self.save_hyperparameters(ignore="model")
self.model = model or Net()
try:
self.test_acc = Accuracy()
except TypeError:
self.test_acc = Accuracy("binary")
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.nll_loss(logits, y.long())
self.test_acc(logits, y)
self.log("test_acc", self.test_acc)
self.log("test_loss", loss)
def configure_optimizers(self):
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
@property
def transform(self):
return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
def prepare_data(self) -> None:
MNIST("./data", download=True)
def train_dataloader(self):
train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
def test_dataloader(self):
test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
if __name__ == "__main__":
Task.add_requirements("requirements.txt")
Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
LightningCLI(ImageClassifier, seed_everything_default=42, run=True)