mirror of
https://github.com/clearml/clearml
synced 2025-04-03 04:21:03 +00:00
Support pytorch-lightning CLI >=2.0
This commit is contained in:
parent
43f7c549fb
commit
a0bc87ab5c
@ -1,4 +1,5 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
try:
|
||||
from jsonargparse import ArgumentParser
|
||||
@ -98,11 +99,13 @@ class PatchJsonArgParse(object):
|
||||
try:
|
||||
PatchJsonArgParse._load_task_params()
|
||||
params = PatchJsonArgParse.__remote_task_params_dict
|
||||
print(params)
|
||||
params_namespace = Namespace()
|
||||
for k, v in params.items():
|
||||
params_namespace[k] = v
|
||||
return params_namespace
|
||||
except Exception:
|
||||
except Exception as e:
|
||||
logging.getLogger(__file__).warning("Failed parsing jsonargparse arguments: {}".format(e))
|
||||
return original_fn(obj, **kwargs)
|
||||
parsed_args = original_fn(obj, **kwargs)
|
||||
# noinspection PyBroadException
|
||||
@ -114,10 +117,14 @@ class PatchJsonArgParse(object):
|
||||
PatchJsonArgParse._args_type[ns_name] = PatchJsonArgParse._command_type
|
||||
subcommand = ns_val
|
||||
try:
|
||||
import pytorch_lightning
|
||||
import lightning
|
||||
except ImportError:
|
||||
pytorch_lightning = None
|
||||
if subcommand and subcommand in PatchJsonArgParse._args and pytorch_lightning:
|
||||
try:
|
||||
import pytorch_lightning
|
||||
lightning = pytorch_lightning
|
||||
except ImportError:
|
||||
lightning = None
|
||||
if subcommand and subcommand in PatchJsonArgParse._args and lightning:
|
||||
subcommand_args = flatten_dictionary(
|
||||
PatchJsonArgParse._args[subcommand],
|
||||
prefix=subcommand + PatchJsonArgParse._commands_sep,
|
||||
@ -127,8 +134,8 @@ class PatchJsonArgParse(object):
|
||||
PatchJsonArgParse._args.update(subcommand_args)
|
||||
PatchJsonArgParse._args = {k: v for k, v in PatchJsonArgParse._args.items()}
|
||||
PatchJsonArgParse._update_task_args()
|
||||
except Exception:
|
||||
pass
|
||||
except Exception as e:
|
||||
logging.getLogger(__file__).warning("Failed parsing jsonargparse arguments: {}".format(e))
|
||||
return parsed_args
|
||||
|
||||
@staticmethod
|
||||
|
@ -1,103 +1,14 @@
|
||||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Notice that this file has been modified to examplify the use of
|
||||
# ClearML when used with PyTorch Lightning
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from torch.nn import functional as F
|
||||
import torch.nn as nn
|
||||
from torchmetrics import Accuracy
|
||||
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from pytorch_lightning import LightningModule
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
try:
|
||||
from lightning.pytorch.cli import LightningCLI
|
||||
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule
|
||||
except ImportError:
|
||||
import sys
|
||||
print("Module 'lightning' not installed (only available for Python 3.8+")
|
||||
sys.exit(0)
|
||||
from clearml import Task
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
||||
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
||||
self.dropout1 = nn.Dropout(0.25)
|
||||
self.dropout2 = nn.Dropout(0.5)
|
||||
self.fc1 = nn.Linear(9216, 128)
|
||||
self.fc2 = nn.Linear(128, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = F.relu(x)
|
||||
x = self.conv2(x)
|
||||
x = F.relu(x)
|
||||
x = F.max_pool2d(x, 2)
|
||||
x = self.dropout1(x)
|
||||
x = torch.flatten(x, 1)
|
||||
x = self.fc1(x)
|
||||
x = F.relu(x)
|
||||
x = self.dropout2(x)
|
||||
x = self.fc2(x)
|
||||
output = F.log_softmax(x, dim=1)
|
||||
return output
|
||||
|
||||
|
||||
class ImageClassifier(LightningModule):
|
||||
def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
|
||||
super().__init__()
|
||||
self.save_hyperparameters(ignore="model")
|
||||
self.model = model or Net()
|
||||
self.test_acc = Accuracy()
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
loss = F.nll_loss(logits, y.long())
|
||||
return loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
loss = F.nll_loss(logits, y.long())
|
||||
self.test_acc(logits, y)
|
||||
self.log("test_acc", self.test_acc)
|
||||
self.log("test_loss", loss)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
|
||||
return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
|
||||
|
||||
@property
|
||||
def transform(self):
|
||||
return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
|
||||
|
||||
def prepare_data(self) -> None:
|
||||
MNIST("./data", download=True)
|
||||
|
||||
def train_dataloader(self):
|
||||
train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
|
||||
return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
|
||||
|
||||
def test_dataloader(self):
|
||||
test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
|
||||
return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Task.add_requirements('requirements.txt')
|
||||
task = Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
|
||||
LightningCLI(ImageClassifier, seed_everything_default=42, save_config_overwrite=True, run=True)
|
||||
Task.add_requirements("requirements.txt")
|
||||
Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
|
||||
LightningCLI(DemoModel, BoringDataModule)
|
||||
|
@ -1,12 +1,13 @@
|
||||
trainer:
|
||||
callbacks:
|
||||
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
||||
- class_path: lightning.pytorch.callbacks.LearningRateMonitor
|
||||
init_args:
|
||||
logging_interval: epoch
|
||||
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
||||
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
filename: best
|
||||
save_last: False
|
||||
save_top_k: 1
|
||||
monitor: loss
|
||||
mode: min
|
||||
max_epochs: 10
|
||||
|
114
examples/frameworks/jsonargparse/pytorch_lightning_cli_old.py
Normal file
114
examples/frameworks/jsonargparse/pytorch_lightning_cli_old.py
Normal file
@ -0,0 +1,114 @@
|
||||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Notice that this file has been modified to examplify the use of
|
||||
# ClearML when used with PyTorch Lightning
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from torch.nn import functional as F
|
||||
import torch.nn as nn
|
||||
from torchmetrics import Accuracy
|
||||
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from pytorch_lightning import LightningModule
|
||||
from clearml import Task
|
||||
try:
|
||||
from pytorch_lightning.cli import LightningCLI
|
||||
except ImportError:
|
||||
try:
|
||||
from pytorch_lightning.utilities.cli import LightningCLI
|
||||
except ImportError:
|
||||
print("Looks like you are using pytorch_lightning>=2.0. This example only works with older versions")
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
||||
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
||||
self.dropout1 = nn.Dropout(0.25)
|
||||
self.dropout2 = nn.Dropout(0.5)
|
||||
self.fc1 = nn.Linear(9216, 128)
|
||||
self.fc2 = nn.Linear(128, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = F.relu(x)
|
||||
x = self.conv2(x)
|
||||
x = F.relu(x)
|
||||
x = F.max_pool2d(x, 2)
|
||||
x = self.dropout1(x)
|
||||
x = torch.flatten(x, 1)
|
||||
x = self.fc1(x)
|
||||
x = F.relu(x)
|
||||
x = self.dropout2(x)
|
||||
x = self.fc2(x)
|
||||
output = F.log_softmax(x, dim=1)
|
||||
return output
|
||||
|
||||
|
||||
class ImageClassifier(LightningModule):
|
||||
def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
|
||||
super().__init__()
|
||||
self.save_hyperparameters(ignore="model")
|
||||
self.model = model or Net()
|
||||
try:
|
||||
self.test_acc = Accuracy()
|
||||
except TypeError:
|
||||
self.test_acc = Accuracy("binary")
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
loss = F.nll_loss(logits, y.long())
|
||||
return loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
loss = F.nll_loss(logits, y.long())
|
||||
self.test_acc(logits, y)
|
||||
self.log("test_acc", self.test_acc)
|
||||
self.log("test_loss", loss)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
|
||||
return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
|
||||
|
||||
@property
|
||||
def transform(self):
|
||||
return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
|
||||
|
||||
def prepare_data(self) -> None:
|
||||
MNIST("./data", download=True)
|
||||
|
||||
def train_dataloader(self):
|
||||
train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
|
||||
return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
|
||||
|
||||
def test_dataloader(self):
|
||||
test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
|
||||
return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
Task.add_requirements("requirements.txt")
|
||||
Task.init(project_name="example", task_name="pytorch_lightning_jsonargparse")
|
||||
LightningCLI(ImageClassifier, seed_everything_default=42, run=True)
|
@ -0,0 +1,12 @@
|
||||
trainer:
|
||||
callbacks:
|
||||
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
||||
init_args:
|
||||
logging_interval: epoch
|
||||
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
||||
init_args:
|
||||
filename: best
|
||||
save_last: False
|
||||
save_top_k: 1
|
||||
monitor: loss
|
||||
mode: min
|
@ -1,7 +1,8 @@
|
||||
clearml
|
||||
jsonargparse
|
||||
pytorch_lightning
|
||||
torch
|
||||
torchmetrics
|
||||
torchvision
|
||||
docstring_parser
|
||||
pytorch-lightning[extra]
|
||||
lightning; python_version >= '3.8'
|
||||
|
@ -1,13 +1,14 @@
|
||||
import os
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
from clearml import Task
|
||||
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
from torchvision import transforms
|
||||
from torchvision.datasets.mnist import MNIST
|
||||
|
||||
from clearml import Task
|
||||
|
||||
|
||||
class LitClassifier(pl.LightningModule):
|
||||
@ -35,12 +36,13 @@ class LitClassifier(pl.LightningModule):
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
self.log('valid_loss', loss)
|
||||
return loss
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
self.log('test_loss', loss)
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
||||
@ -54,19 +56,17 @@ class LitClassifier(pl.LightningModule):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Connecting ClearML with the current process,
|
||||
# from here on everything is logged automatically
|
||||
task = Task.init(project_name="examples", task_name="PyTorch lightning MNIST example")
|
||||
|
||||
pl.seed_everything(0)
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('--batch_size', default=32, type=int)
|
||||
parser = pl.Trainer.add_argparse_args(parser)
|
||||
parser.set_defaults(max_epochs=3)
|
||||
parser.add_argument('--max_epochs', default=3, type=int)
|
||||
sys.argv.extend(['--max_epochs', '2'])
|
||||
parser = LitClassifier.add_model_specific_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
Task.init(project_name="examples-internal", task_name="lightning checkpoint issue and argparser")
|
||||
|
||||
# ------------
|
||||
# data
|
||||
# ------------
|
||||
@ -74,9 +74,9 @@ if __name__ == '__main__':
|
||||
mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor())
|
||||
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
|
||||
|
||||
train_loader = DataLoader(mnist_train, batch_size=args.batch_size, num_workers=os.cpu_count())
|
||||
val_loader = DataLoader(mnist_val, batch_size=args.batch_size, num_workers=os.cpu_count())
|
||||
test_loader = DataLoader(mnist_test, batch_size=args.batch_size, num_workers=os.cpu_count())
|
||||
train_loader = DataLoader(mnist_train, batch_size=args.batch_size)
|
||||
val_loader = DataLoader(mnist_val, batch_size=args.batch_size)
|
||||
test_loader = DataLoader(mnist_test, batch_size=args.batch_size)
|
||||
|
||||
# ------------
|
||||
# model
|
||||
@ -86,7 +86,7 @@ if __name__ == '__main__':
|
||||
# ------------
|
||||
# training
|
||||
# ------------
|
||||
trainer = pl.Trainer.from_argparse_args(args)
|
||||
trainer = pl.Trainer(max_epochs=args.max_epochs)
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
|
||||
# ------------
|
||||
|
Loading…
Reference in New Issue
Block a user