* Support for *Jupyter Notebook* (see [trains-jupyter-plugin](https://github.com/allegroai/trains-jupyter-plugin))
and *PyCharm* remote debugging (see [trains-pycharm-plugin](https://github.com/allegroai/trains-pycharm-plugin))
* Log everything. Experiments become truly repeatable
* Model logging with **automatic association** of **model + code + parameters + initial weights**
* Automatically create a copy of models on centralized storage
([supports shared folders, S3, GS,](https://github.com/allegroai/trains/blob/master/docs/faq.md#i-read-there-is-a-feature-for-centralized-model-storage-how-do-i-use-it-) and Azure is coming soon!)
* Share and collaborate
* Multi-user process tracking and collaboration
* Centralized server for aggregating logs, records, and general bookkeeping
1. TRAINS [python package](https://pypi.org/project/trains/) (auto-magically connects your code, see [Using TRAINS](https://github.com/allegroai/trains#using-trains))
2. [TRAINS-server](https://github.com/allegroai/trains-server) for logging, querying, control and UI ([Web-App](https://github.com/allegroai/trains-web))
The following diagram illustrates the interaction of the [TRAINS-server](https://github.com/allegroai/trains-server)
and a GPU training machine using the TRAINS python package