clearml/examples/pipeline/step3_train_model.py

59 lines
1.6 KiB
Python
Raw Permalink Normal View History

import joblib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
2020-12-22 21:25:37 +00:00
from clearml import Task
2020-12-23 22:30:32 +00:00
# Connecting ClearML with the current process,
# from here on everything is logged automatically
task = Task.init(project_name="examples", task_name="Pipeline step 3 train model")
# Arguments
args = {
'dataset_task_id': 'REPLACE_WITH_DATASET_TASK_ID',
}
task.connect(args)
# only create the task, we will actually execute it later
task.execute_remotely()
print('Retrieving Iris dataset')
dataset_task = Task.get_task(task_id=args['dataset_task_id'])
X_train = dataset_task.artifacts['X_train'].get()
X_test = dataset_task.artifacts['X_test'].get()
y_train = dataset_task.artifacts['y_train'].get()
y_test = dataset_task.artifacts['y_test'].get()
print('Iris dataset loaded')
model = LogisticRegression(solver='liblinear', multi_class='auto')
model.fit(X_train, y_train)
joblib.dump(model, 'model.pkl', compress=True)
loaded_model = joblib.load('model.pkl')
result = loaded_model.score(X_test, y_test)
print('model trained & stored')
x_min, x_max = X_test[:, 0].min() - .5, X_test[:, 0].max() + .5
y_min, y_max = X_test[:, 1].min() - .5, X_test[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
plt.figure(1, figsize=(4, 3))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title('Iris Types')
plt.show()
print('Done')