mirror of
https://github.com/clearml/clearml-serving
synced 2025-01-31 02:46:54 +00:00
.. | ||
preprocess.py | ||
readme.md | ||
requirements.txt | ||
train_model.py |
Train and Deploy Scikit-Learn model
training mock logistic regression model
Run the mock python training code
pip install -r examples/sklearn/requirements.txt
python examples/sklearn/train_model.py
The output will be a model created on the project "serving examples", by the name "train sklearn model"
setting up the serving service
- Create serving Service:
clearml-serving create --name "serving example"
(write down the service ID) - Create model endpoint:
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"
Or auto update
clearml-serving --id <service_id> model auto-update --engine sklearn --endpoint "test_model_sklearn_auto" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples" --max-versions 2
Or add Canary endpoint
clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_sklearn_auto
- Run the clearml-serving container
docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
- Test new endpoint:
curl -X POST "http://127.0.0.1:8080/serve/test_model_sklearn" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'
Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc.