clearml-serving/examples/pipeline/readme.md

1.4 KiB

Deploy a model inference pipeline

prerequisites

Training a scikit-learn model (see example/sklearn)

setting up the serving service

  1. Create serving Service (if not already running): clearml-serving create --name "serving example" (write down the service ID)

  2. Create model base two endpoints: clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_a" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"

clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_b" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"

  1. Create pipeline model endpoint: clearml-serving --id <service_id> model add --engine custom --endpoint "test_model_pipeline" --preprocess "examples/pipeline/preprocess.py"

  2. Run the clearml-serving container docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest

  3. Test new endpoint: curl -X POST "http://127.0.0.1:8080/serve/test_model_pipeline" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'

Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc.