1.4 KiB
Deploy a model inference pipeline
prerequisites
Training a scikit-learn model (see example/sklearn)
setting up the serving service
-
Create serving Service (if not already running):
clearml-serving create --name "serving example"
(write down the service ID) -
Create model base two endpoints:
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_a" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"
clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn_b" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"
-
Create pipeline model endpoint:
clearml-serving --id <service_id> model add --engine custom --endpoint "test_model_pipeline" --preprocess "examples/pipeline/preprocess.py"
-
Run the clearml-serving container
docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
-
Test new endpoint:
curl -X POST "http://127.0.0.1:8080/serve/test_model_pipeline" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'
Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc. by default new endpoints/models will be automatically updated after 1 minute