clearml-serving/examples/sklearn
2022-03-06 02:10:30 +02:00
..
preprocess.py ClearML-Serving v2 initial working commit 2022-03-06 01:25:56 +02:00
readme.md Update readme.md 2022-03-06 02:10:30 +02:00
requirements.txt Add missing requirements 2022-03-06 02:05:52 +02:00
train_model.py ClearML-Serving v2 initial working commit 2022-03-06 01:25:56 +02:00

Train and Deploy Scikit-Learn model

training mock logistic regression model

Run the mock python training code

pip install -r examples/sklearn/requirements.txt 
python examples/sklearn/train_model.py

The output will be a model created on the project "serving examples", by the name "train sklearn model"

setting up the serving service

  1. Create serving Service: clearml-serving create --name "serving example" (write down the service ID)
  2. Create model endpoint: clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"

Or auto update

clearml-serving --id <service_id> model auto-update --engine sklearn --endpoint "test_model_sklearn_auto" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples" --max-versions 2

Or add Canary endpoint

clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_sklearn_auto

  1. Run the clearml-serving container docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest
  2. Test new endpoint: curl -X POST "http://127.0.0.1:8080/serve/test_model_sklearn" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'

Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc.