clearml-serving/examples/sklearn/readme.md
2022-03-06 01:25:56 +02:00

1.8 KiB

Train and Deploy Scikit-Learn model

training mock model

Run the mock python training code

python3 train_model.py

The output will be a model created on the project "serving examples", by the name "train sklearn model"

setting up the serving service

  1. Create serving Service: clearml-serving create --name "serving example" (write down the service ID)

  2. Create model endpoint: clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "preprocess.py" --name "train sklearn model" --project "serving examples" Or auto update clearml-serving --id <service_id> model auto-update --engine sklearn --endpoint "test_model_sklearn_auto" --preprocess "preprocess.py" --name "train sklearn model" --project "serving examples" --max-versions 2 Or add Canary endpoint clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_sklearn_auto

  3. Run the clearml-serving container docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest

  4. Test new endpoint: curl -X POST "http://127.0.0.1:8080/serve/test_model_sklearn" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'

Notice: You can also change the serving service while it is already running! This includes adding/removing endpoints, adding canary model routing etc.

Running / debugging the serving service manually

Once you have setup the Serving Service Task

$ pip3 install -r clearml_serving/serving/requirements.txt
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
    --preload clearml_serving.serving.main:app \ 
    --workers 4 \
    --worker-class uvicorn.workers.UvicornWorker \
    --bind 0.0.0.0:8080