2022-04-25 09:05:35 +00:00
# Train and Deploy Pytorch model with Nvidia Triton Engine
2022-03-05 23:25:56 +00:00
2022-03-06 00:05:52 +00:00
## training mnist digit classifier model
2022-03-05 23:25:56 +00:00
Run the mock python training code
```bash
2022-03-06 00:05:52 +00:00
pip install -r examples/pytorch/requirements.txt
python examples/pytorch/train_pytorch_mnist.py
2022-03-05 23:25:56 +00:00
```
The output will be a model created on the project "serving examples", by the name "train pytorch model"
*Notice* Only TorchScript models are supported by Triton server
## setting up the serving service
2022-03-20 23:00:19 +00:00
Prerequisites, PyTorch models require Triton engine support, please use `docker-compose-triton.yml` / `docker-compose-triton-gpu.yml` or if running on Kubernetes, the matching helm chart.
2022-03-05 23:25:56 +00:00
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
2. Create model endpoint:
2022-03-06 00:12:02 +00:00
2022-03-06 00:05:52 +00:00
`clearml-serving --id < service_id > model add --engine triton --endpoint "test_model_pytorch" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples"
2022-03-06 01:14:06 +00:00
--input-size 1 28 28 --input-name "INPUT__0" --input-type float32
2022-03-05 23:25:56 +00:00
--output-size -1 10 --output-name "OUTPUT__0" --output-type float32
`
2022-03-06 00:12:02 +00:00
2022-03-05 23:25:56 +00:00
Or auto update
2022-03-06 00:12:02 +00:00
2022-03-06 00:05:52 +00:00
`clearml-serving --id < service_id > model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2
2022-03-06 01:14:06 +00:00
--input-size 1 28 28 --input-name "INPUT__0" --input-type float32
2022-03-06 00:12:02 +00:00
--output-size -1 10 --output-name "OUTPUT__0" --output-type float32`
2022-03-05 23:25:56 +00:00
Or add Canary endpoint
2022-03-06 00:12:02 +00:00
2022-03-05 23:25:56 +00:00
`clearml-serving --id <service_id> model canary --endpoint "test_model_pytorch_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_pytorch_auto`
2022-03-21 15:54:57 +00:00
3. Make sure you have the `clearml-serving` `docker-compose-triton.yml` (or `docker-compose-triton-gpu.yml` ) running, it might take it a minute or two to sync with the new endpoint.
2022-10-07 23:12:18 +00:00
4. Test new endpoint (do notice the first call will trigger the model pulling, so it might take longer, from here on, it's all in memory): \
`curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "accept: application/json" -H "Content-Type: application/json" -d '{"url": "https://camo.githubusercontent.com/8385ca52c9cba1f6e629eb938ab725ec8c9449f12db81f9a34e18208cd328ce9/687474703a2f2f706574722d6d6172656b2e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f6465636f6d707265737365642e6a7067"}'` \
or send a local file to be classified with \
`curl -X POST "http://127.0.0.1:8080/serve/test_model_pytorch" -H "Content-Type: image/jpeg" --data-binary "@5.jpg"`
2022-03-05 23:25:56 +00:00
> **_Notice:_** You can also change the serving service while it is already running!
This includes adding/removing endpoints, adding canary model routing etc.
2022-03-20 23:00:19 +00:00
by default new endpoints/models will be automatically updated after 1 minute