clearml-serving/clearml_serving/serving/endpoints.py

125 lines
6.1 KiB
Python
Raw Normal View History

import numpy as np
2022-03-20 23:00:19 +00:00
from attr import attrib, attrs, asdict, validators
def _engine_validator(inst, attr, value): # noqa
from .preprocess_service import BasePreprocessRequest
if not BasePreprocessRequest.validate_engine_type(value):
raise TypeError("{} not supported engine type".format(value))
def _matrix_type_validator(inst, attr, value): # noqa
if isinstance(value, (tuple, list)):
for v in value:
if v and not np.dtype(v):
raise TypeError("{} not supported matrix type".format(v))
elif value and not np.dtype(value):
raise TypeError("{} not supported matrix type".format(value))
def _list_type_convertor(inst): # noqa
if inst is None:
return None
return inst if isinstance(inst, (tuple, list)) else [inst]
def _nested_list_type_convertor(inst): # noqa
if inst is None:
return None
if isinstance(inst, (tuple, list)) and all(not isinstance(i, (tuple, list)) for i in inst):
return [inst]
inst = inst if isinstance(inst, (tuple, list)) else [inst]
return inst
@attrs
2022-03-20 23:00:19 +00:00
class BaseStruct(object):
def as_dict(self, remove_null_entries=False):
if not remove_null_entries:
return asdict(self)
return {k: v for k, v in asdict(self).items() if v is not None}
@attrs
class ModelMonitoring(BaseStruct):
base_serving_url = attrib(type=str) # serving point url prefix (example: "detect_cat")
engine_type = attrib(type=str, validator=_engine_validator) # engine type
monitor_project = attrib(type=str, default=None) # monitor model project (for model auto update)
monitor_name = attrib(type=str, default=None) # monitor model name (for model auto update, regexp selection)
monitor_tags = attrib(type=list, default=[]) # monitor model tag (for model auto update)
only_published = attrib(type=bool, default=False) # only select published models
max_versions = attrib(type=int, default=None) # Maximum number of models to keep serving (latest X models)
input_size = attrib(type=list, default=None, converter=_nested_list_type_convertor) # optional, model matrix size
input_type = attrib(type=list, default=None, validator=_matrix_type_validator, converter=_list_type_convertor)
input_name = attrib(type=list, default=None, converter=_list_type_convertor) # optional, input layer names
output_size = attrib(type=list, default=None, converter=_nested_list_type_convertor) # optional, model matrix size
output_type = attrib(type=list, default=None, validator=_matrix_type_validator, converter=_list_type_convertor)
output_name = attrib(type=list, default=None, converter=_list_type_convertor) # optional, output layer names
preprocess_artifact = attrib(
type=str, default=None) # optional artifact name storing the model preprocessing code
auxiliary_cfg = attrib(type=dict, default=None) # Auxiliary configuration (e.g. triton conf), Union[str, dict]
@attrs
2022-03-20 23:00:19 +00:00
class ModelEndpoint(BaseStruct):
engine_type = attrib(type=str, validator=_engine_validator) # engine type
serving_url = attrib(type=str) # full serving point url (including version) example: "detect_cat/v1"
model_id = attrib(type=str, default=None) # model ID to serve (and download)
version = attrib(type=str, default="") # key (version string), default no version
preprocess_artifact = attrib(
type=str, default=None) # optional artifact name storing the model preprocessing code
input_size = attrib(type=list, default=None, converter=_nested_list_type_convertor) # optional, model matrix size
input_type = attrib(type=list, default=None, validator=_matrix_type_validator, converter=_list_type_convertor)
input_name = attrib(type=list, default=None, converter=_list_type_convertor) # optional, input layer names
output_size = attrib(type=list, default=None, converter=_nested_list_type_convertor) # optional, model matrix size
output_type = attrib(type=list, default=None, validator=_matrix_type_validator, converter=_list_type_convertor)
output_name = attrib(type=list, default=None, converter=_list_type_convertor) # optional, output layer names
auxiliary_cfg = attrib(type=dict, default=None) # Optional: Auxiliary configuration (e.g. triton conf), [str, dict]
@attrs
2022-03-20 23:00:19 +00:00
class CanaryEP(BaseStruct):
endpoint = attrib(type=str) # load balancer endpoint
weights = attrib(type=list) # list of weights (order should be matching fixed_endpoints or prefix)
load_endpoints = attrib(type=list, default=[]) # list of endpoints to balance and route
load_endpoint_prefix = attrib(
type=str, default=None) # endpoint prefix to list
# (any endpoint starting with this prefix will be listed, sorted lexicographically, or broken into /<int>)
2022-03-20 23:00:19 +00:00
@attrs
class EndpointMetricLogging(BaseStruct):
@attrs
class MetricType(BaseStruct):
type = attrib(type=str, validator=validators.in_(("scalar", "enum", "value", "counter")))
buckets = attrib(type=list, default=None)
endpoint = attrib(type=str) # Specific endpoint to log metrics w/ version (example: "model/1")
# If endpoint name ends with a "*" any endpoint with a matching prefix will be selected
log_frequency = attrib(type=float, default=None) # Specific endpoint to log frequency
# (0.0 to 1.0, where 1.0 is 100% of all requests are logged)
metrics = attrib(
type=dict, default={},
2022-06-05 13:11:55 +00:00
converter=lambda x: {
k: v if isinstance(v, EndpointMetricLogging.MetricType)
else EndpointMetricLogging.MetricType(**v) for k, v in x.items()
}
) # key=variable, value=MetricType
2022-03-20 23:00:19 +00:00
# example:
# {"x1": dict(type="scalar", buckets=[0,1,2,3]),
# "y": dict(type="enum", buckets=["cat", "dog"]).
# "latency": dict(type="value", buckets=[]).
# }
def as_dict(self, remove_null_entries=False):
if not remove_null_entries:
2022-03-20 23:00:19 +00:00
return {k: v.as_dict(remove_null_entries) if isinstance(v, BaseStruct) else v
for k, v in asdict(self).items()}
return {k: v.as_dict(remove_null_entries) if isinstance(v, BaseStruct) else v
for k, v in asdict(self).items() if v is not None}