mirror of
https://github.com/clearml/clearml-serving
synced 2025-02-07 13:22:16 +00:00
76 lines
4.2 KiB
Python
76 lines
4.2 KiB
Python
|
import numpy as np
|
||
|
from attr import attrib, attrs, asdict
|
||
|
|
||
|
|
||
|
def _engine_validator(inst, attr, value): # noqa
|
||
|
from .preprocess_service import BasePreprocessRequest
|
||
|
if not BasePreprocessRequest.validate_engine_type(value):
|
||
|
raise TypeError("{} not supported engine type".format(value))
|
||
|
|
||
|
|
||
|
def _matrix_type_validator(inst, attr, value): # noqa
|
||
|
if value and not np.dtype(value):
|
||
|
raise TypeError("{} not supported matrix type".format(value))
|
||
|
|
||
|
|
||
|
@attrs
|
||
|
class ModelMonitoring(object):
|
||
|
base_serving_url = attrib(type=str) # serving point url prefix (example: "detect_cat")
|
||
|
engine_type = attrib(type=str, validator=_engine_validator) # engine type
|
||
|
monitor_project = attrib(type=str, default=None) # monitor model project (for model auto update)
|
||
|
monitor_name = attrib(type=str, default=None) # monitor model name (for model auto update, regexp selection)
|
||
|
monitor_tags = attrib(type=list, default=[]) # monitor model tag (for model auto update)
|
||
|
only_published = attrib(type=bool, default=False) # only select published models
|
||
|
max_versions = attrib(type=int, default=None) # Maximum number of models to keep serving (latest X models)
|
||
|
input_size = attrib(type=list, default=None) # optional, model matrix size
|
||
|
input_type = attrib(type=str, default=None, validator=_matrix_type_validator) # optional, model matrix type
|
||
|
input_name = attrib(type=str, default=None) # optional, layer name to push the input to
|
||
|
output_size = attrib(type=list, default=None) # optional, model matrix size
|
||
|
output_type = attrib(type=str, default=None, validator=_matrix_type_validator) # optional, model matrix type
|
||
|
output_name = attrib(type=str, default=None) # optional, layer name to pull the results from
|
||
|
preprocess_artifact = attrib(
|
||
|
type=str, default=None) # optional artifact name storing the model preprocessing code
|
||
|
auxiliary_cfg = attrib(type=dict, default=None) # Auxiliary configuration (e.g. triton conf), Union[str, dict]
|
||
|
|
||
|
def as_dict(self, remove_null_entries=False):
|
||
|
if not remove_null_entries:
|
||
|
return asdict(self)
|
||
|
return {k: v for k, v in asdict(self).items() if v is not None}
|
||
|
|
||
|
|
||
|
@attrs
|
||
|
class ModelEndpoint(object):
|
||
|
engine_type = attrib(type=str, validator=_engine_validator) # engine type
|
||
|
serving_url = attrib(type=str) # full serving point url (including version) example: "detect_cat/v1"
|
||
|
model_id = attrib(type=str, default=None) # model ID to serve (and download)
|
||
|
version = attrib(type=str, default="") # key (version string), default no version
|
||
|
preprocess_artifact = attrib(
|
||
|
type=str, default=None) # optional artifact name storing the model preprocessing code
|
||
|
input_size = attrib(type=list, default=None) # optional, model matrix size
|
||
|
input_type = attrib(type=str, default=None, validator=_matrix_type_validator) # optional, model matrix type
|
||
|
input_name = attrib(type=str, default=None) # optional, layer name to push the input to
|
||
|
output_size = attrib(type=list, default=None) # optional, model matrix size
|
||
|
output_type = attrib(type=str, default=None, validator=_matrix_type_validator) # optional, model matrix type
|
||
|
output_name = attrib(type=str, default=None) # optional, layer name to pull the results from
|
||
|
auxiliary_cfg = attrib(type=dict, default=None) # Optional: Auxiliary configuration (e.g. triton conf), [str, dict]
|
||
|
|
||
|
def as_dict(self, remove_null_entries=False):
|
||
|
if not remove_null_entries:
|
||
|
return asdict(self)
|
||
|
return {k: v for k, v in asdict(self).items() if v is not None}
|
||
|
|
||
|
|
||
|
@attrs
|
||
|
class CanaryEP(object):
|
||
|
endpoint = attrib(type=str) # load balancer endpoint
|
||
|
weights = attrib(type=list) # list of weights (order should be matching fixed_endpoints or prefix)
|
||
|
load_endpoints = attrib(type=list, default=[]) # list of endpoints to balance and route
|
||
|
load_endpoint_prefix = attrib(
|
||
|
type=str, default=None) # endpoint prefix to list
|
||
|
# (any endpoint starting with this prefix will be listed, sorted lexicographically, or broken into /<int>)
|
||
|
|
||
|
def as_dict(self, remove_null_entries=False):
|
||
|
if not remove_null_entries:
|
||
|
return asdict(self)
|
||
|
return {k: v for k, v in asdict(self).items() if v is not None}
|