mirror of
https://github.com/clearml/clearml-docs
synced 2025-02-15 00:43:01 +00:00
2.0 KiB
2.0 KiB
title |
---|
Image Reporting |
The image_reporting.py example demonstrates reporting (uploading) images in several formats, including:
- NumPy arrays
- uint8
- uint8 RGB
- PIL Image objects
- Local files.
ClearML uploads images to the bucket specified in the ClearML configuration file,
or ClearML can be configured for image storage, see Logger.set_default_upload_destination()
(storage for artifacts is different). Set credentials for
storage in the ClearML configuration file.
When the script runs, it creates a task named image reporting
in the examples
project.
Report images using several formats by calling Logger.report_image()
:
# report image as float image
m = np.eye(256, 256, dtype=np.float)
Logger.current_logger().report_image(title="image", series="image float", iteration=iteration, image=m)
# report image as uint8
m = np.eye(256, 256, dtype=np.uint8) * 255
Logger.current_logger().report_image(title="image", series="image uint8", iteration=iteration, image=m)
# report image as uint8 RGB
m = np.concatenate((np.atleast_3d(m), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2)
Logger.current_logger().report_image(
title="image",
series="image color red",
iteration=iteration,
image=m
)
# report PIL Image object
image_open = Image.open(os.path.join("data_samples", "picasso.jpg"))
Logger.current_logger().report_image(
title="image",
series="image PIL",
iteration=iteration,
image=image_open
)
ClearML reports these images as debug samples in the ClearML Web UI, under the task's DEBUG SAMPLES tab.
Click a thumbnail to open the image viewer.