clearml-docs/docs/clearml_agent/clearml_agent_execute.md
2022-08-15 17:31:02 +03:00

3.1 KiB

title
execute

This reference page provides detailed information about ClearML Agent's execute subcommand, which you can use to build and execute an experiment without a queue.

Syntax

clearml-agent execute [-h] --id TASK_ID [--log-file LOG_FILE] [--disable-monitoring] 
                      [--full-monitoring] [--require-queue]
                      [--standalone-mode] [--docker [DOCKER [DOCKER ...]]] [--clone] 
                      [-O] [--git-user GIT_USER] [--git-pass GIT_PASS] 
                      [--log-level {DEBUG,INFO,WARN,WARNING,ERROR,CRITICAL}] 
                      [--gpus GPUS] [--cpu-only]

Arguments


id (mandatory)

  • The ID of the Task to build.

clone

  • Clone the Task specified by id, and then execute that cloned Task.

cpu-only

  • Disable GPU access for the daemon, only use CPU in either docker or virtual environment.

docker

  • Run in Docker mode. Execute the Task inside a Docker container.

    To specify the image name and optional arguments, either:

    • use --docker <image_name> <args> on the command line, or
    • use --docker on the command line, and specify the default image name and arguments in the configuration file.

    Environment variable settings for Dockers containers:

    • ClearML_DOCKER_SKIP_GPUS_FLAG - Ignore the gpus flag inside the Docker container. This also allows you to execute ClearML Agent using Docker versions earlier than 19.03.
    • NVIDIA_VISIBLE_DEVICES - Limit GPU visibility for the Docker container.
    • ClearML_AGENT_GIT_USER and ClearML_AGENT_GIT_PASS - Pass these credentials to the Docker container at execution.

disable-monitoring

  • Disable logging and monitoring, except for stdout.

full-monitoring

  • Create a full log, including the environment setup log, Task log, and monitoring, as well as stdout.

git-pass

  • Git password for repository access.

git-user

  • Git username for repository access.

gpus

  • Specify active GPUs for the daemon to use (docker / virtual environment), Equivalent to setting NVIDIA_VISIBLE_DEVICES. Examples: --gpus 0 or --gpu 0,1,2 or --gpus all

h, help

  • Get help for this command.

log-file

  • The log file for Task execution output (stdout / stderr) to a text file.

log-level

  • SDK log level. The values are:

    • DEBUG
    • INFO
    • WARN
    • WARNING
    • ERROR
    • CRITICAL

O

  • Compile optimized pyc code (see python documentation). Repeat for more optimization.

require-queue

  • If the specified task is not queued (in any Queue), the execution will fail. (Used for 3rd party scheduler integration, e.g. K8s, SLURM, etc.)

standalone-mode

  • Do not use any network connects, assume everything is pre-installed