clearml-docs/docs/integrations/tensorboard.md
2023-08-09 14:35:38 +03:00

62 lines
3.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: TensorBoard
---
:::tip
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
:::
[TensorBoard](https://www.tensorflow.org/tensorboard) is TensorFlow's data visualization toolkit.
ClearML automatically captures all data logged to TensorBoard. All you have to do is add two
lines of code to your script:
```python
from clearml import Task
task = Task.init(task_name="<task_name>", project_name="<project_name>")
```
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
uncommitted code, python environment, your TensorBoard metrics, plots, images, and text.
View the TensorBoard outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
![TensorBoard WebApp scalars](../img/examples_pytorch_tensorboard_07.png)
![Tensorboard WebApp debug samples](../img/examples_tensorboard_toy_pytorch_02.png)
## Automatic Logging Control
By default, when ClearML is integrated into your script, it captures all of your TensorBoard plots, images, and metrics.
But, you may want to have more control over what your experiment logs.
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit).
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
frameworks, input a dictionary, with framework-boolean pairs.
For example:
```python
auto_connect_frameworks={
'tensorboard': False,'matplotlib': False, 'tensorflow': False, 'pytorch': True,
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'jsonargparse': True, 'catboost': True
}
```
Note that the `tensorboard` key enables/disables automatic logging for both `TensorBoard` and `TensorboardX`.
## Manual Logging
To augment its automatic logging, ClearML also provides an explicit logging interface.
See more information about explicitly logging information to a ClearML Task:
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
### Examples
Take a look at ClearMLs TensorBoard examples:
* [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md) - Demonstrates logging TensorBoard outputs and TensorFlow flags
* [TensorBoard Toy](../guides/frameworks/tensorflow/tensorboard_toy.md) - Demonstrates logging TensorBoard histograms, scalars, images, text, and TensorFlow flags
* [Tensorboard with PyTorch](../guides/frameworks/pytorch/pytorch_tensorboard.md) - Demonstrates logging TensorBoard scalars, debug samples, and text integrated in code that uses PyTorch