22 KiB
title |
---|
CLI |
:::important
This page covers clearml-data
, ClearML's file-based data management solution.
See Hyper-Datasets for ClearML's advanced queryable dataset management solution.
:::
clearml-data
is a data management CLI tool that comes as part of the clearml
python package. Use clearml-data
to
create, modify, and manage your datasets. You can upload your dataset to any storage service of your choice (S3 / GS /
Azure / Network Storage) by setting the dataset's upload destination (see --storage
). Once you have uploaded
your dataset, you can access it from any machine.
The following page provides a reference to clearml-data
's CLI commands.
create
Creates a new dataset.
clearml-data create [-h] [--parents [PARENTS [PARENTS ...]]] [--project PROJECT]
--name NAME [--version VERSION] [--output-uri OUTPUT_URI]
[--tags [TAGS [TAGS ...]]]
Parameters
Name | Description | Optional |
---|---|---|
--name |
Dataset's name | |
--project |
Dataset's project | |
--version |
Dataset version. Use the semantic versioning scheme. If not specified a version will automatically be assigned | |
--parents |
IDs of the dataset's parents. The dataset inherits all of its parents' content. Multiple parents can be entered, but they are merged in the order they were entered | |
--output-uri |
Sets where dataset and its previews are uploaded to | |
--tags |
Dataset user tags. The dataset can be labeled, which can be useful for organizing datasets |
:::tip Dataset ID
- For datasets created with
clearml
v1.6 or newer on ClearML Server v1.6 or newer, find the ID in the dataset version's info panel in the Dataset UI.
For datasets created with earlier versions ofclearml
, or if using an earlier version of ClearML Server, find the ID in the task header of the dataset task's info panel. - clearml-data works in a stateful mode so once a new dataset is created, the following commands
do not require the
--id
flag. :::
add
Add individual files or complete folders to the dataset.
clearml-data add [-h] [--id ID] [--dataset-folder DATASET_FOLDER]
[--files [FILES [FILES ...]]] [--wildcard [WILDCARD [WILDCARD ...]]]
[--links [LINKS [LINKS ...]]] [--non-recursive] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID. Default: previously created / accessed dataset | |
--files |
Files / folders to add. Items will be uploaded to the dataset's designated storage. | |
--wildcard |
Add specific set of files, denoted by these wildcards. For example: ~/data/*.jpg ~/data/json . Multiple wildcards can be passed. |
|
--links |
Files / folders link to add. Supports S3, GS, Azure links. Example: s3://bucket/data azure://<account name>.blob.core.windows.net/path/to/file . Items remain in their original location. |
|
--dataset-folder |
Dataset base folder to add the files to in the dataset. Default: dataset root | |
--non-recursive |
Disable recursive scan of files | |
--verbose |
Verbose reporting |
remove
Remove files/links from the dataset.
clearml-data remove [-h] [--id ID] [--files [FILES [FILES ...]]]
[--non-recursive] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID. Default: previously created / accessed dataset | |
--files |
Files / folders to remove (wildcard selection is supported, for example: ~/data/*.jpg ~/data/json ). Notice: file path is the path within the dataset, not the local path. For links, you can specify their URL (for example, s3://bucket/data ) |
|
--non-recursive |
Disable recursive scan of files | |
--verbose |
Verbose reporting |
upload
Upload the local dataset changes to the server. By default, it's uploaded to the ClearML file server. You can specify a different storage medium by entering an upload destination. For example:
- A shared folder:
/mnt/shared/folder
- S3:
s3://bucket/folder
- Non-AWS S3-like services (such as MinIO):
s3://host_addr:port/bucket
- Google Cloud Storage:
gs://bucket-name/folder
- Azure Storage:
azure://<account name>.blob.core.windows.net/path/to/file
clearml-data upload [-h] [--id ID] [--storage STORAGE] [--chunk-size CHUNK_SIZE]
[--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID. Default: previously created / accessed dataset | |
--storage |
Remote storage to use for the dataset files. Default: files_server | |
--chunk-size |
Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. | |
--verbose |
Verbose reporting |
close
Finalize the dataset and make it ready to be consumed. This automatically uploads all files that were not previously uploaded. Once a dataset is finalized, it can no longer be modified.
clearml-data close [-h] [--id ID] [--storage STORAGE] [--disable-upload]
[--chunk-size CHUNK_SIZE] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID. Default: previously created / accessed dataset | |
--storage |
Remote storage to use for the dataset files. Default: files_server | |
--disable-upload |
Disable automatic upload when closing the dataset | |
--chunk-size |
Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. | |
--verbose |
Verbose reporting |
sync
Sync a folder's content with ClearML. This option is useful in case a user has a single point of truth (i.e. a folder) which updates from time to time.
Once an update should be reflected in ClearML's system, call clearml-data sync
and pass the folder path,
and the changes (either file addition, modification and removal) will be reflected in ClearML.
This command also uploads the data and finalizes the dataset automatically.
clearml-data sync [-h] [--id ID] [--dataset-folder DATASET_FOLDER] --folder FOLDER
[--parents [PARENTS [PARENTS ...]]] [--project PROJECT] [--name NAME]
[--version VERSION] [--output-uri OUTPUT_URI] [--tags [TAGS [TAGS ...]]]
[--storage STORAGE] [--skip-close] [--chunk-size CHUNK_SIZE] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID. Default: previously created / accessed dataset | |
--dataset-folder |
Dataset base folder to add the files to (default: Dataset root) | |
--folder |
Local folder to sync. Wildcard selection is supported, for example: ~/data/*.jpg ~/data/json |
|
--storage |
Remote storage to use for the dataset files. Default: files server | |
--parents |
IDs of the dataset's parents (i.e. merge all parents). All modifications made to the folder since the parents were synced will be reflected in the dataset | |
--project |
If creating a new dataset, specify the dataset's project name | |
--name |
If creating a new dataset, specify the dataset's name | |
--version |
Specify the dataset's version using the semantic versioning scheme. Default: 1.0.0 |
|
--tags |
Dataset user tags | |
--skip-close |
Do not auto close dataset after syncing folders | |
--chunk-size |
Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. | |
--verbose |
Verbose reporting |
list
List a dataset's contents.
clearml-data list [-h] [--id ID] [--project PROJECT] [--name NAME] [--version VERSION]
[--filter [FILTER [FILTER ...]]] [--modified]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset ID whose contents will be shown (alternatively, use project / name combination). Default: previously accessed dataset | |
--project |
Specify dataset project name (if used instead of ID, dataset name is also required) | |
--name |
Specify dataset name (if used instead of ID, dataset project is also required) | |
--version |
Specify dataset version. Default: most recent version | |
--filter |
Filter files based on folder / wildcard. Multiple filters are supported. Example: folder/date_*.json folder/sub-folder |
|
--modified |
Only list file changes (add / remove / modify) introduced in this version |
set-description
Sets the description of an existing dataset.
clearml-data set-description [-h] [--id ID] [--description DESCRIPTION]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Dataset's ID | |
--description |
Description to be set |
delete
Deletes dataset(s). Pass any of the attributes of the dataset(s) you want to delete. Multiple datasets matching the
request will raise an exception, unless you pass --entire-dataset
and --force
. In this case, all matching datasets
will be deleted.
If a dataset is a parent to a dataset(s), you must pass --force
to delete it.
:::caution Deleting a parent dataset may cause child datasets to lose data! :::
clearml-data delete [-h] [--id ID] [--project PROJECT] [--name NAME]
[--version VERSION] [--force] [--entire-dataset]
Parameters
Name | Description | Optional |
---|---|---|
--id |
ID of the dataset to delete (alternatively, use project / name combination). | |
--project |
Specify dataset project name (if used instead of ID, dataset name is also required) | |
--name |
Specify dataset name (if used instead of ID, dataset project is also required) | |
--version |
Specify dataset version | |
-–force |
Force dataset deletion even if other dataset versions depend on it. Must also be used if --entire-dataset flag is used |
|
--entire-dataset |
Delete all found datasets |
rename
Rename a dataset (and all of its versions).
clearml-data rename [-h] --new-name NEW_NAME --project PROJECT --name NAME
Parameters
Name | Description | Optional |
---|---|---|
--new-name |
The new name of the dataset | |
--project |
The project the dataset to be renamed belongs to | |
--name |
The current name of the dataset(s) to be renamed |
move
Moves a dataset to another project
clearml-data move [-h] --new-project NEW_PROJECT --project PROJECT --name NAME
Parameters
Name | Description | Optional |
---|---|---|
--new-project |
The new project of the dataset | |
--project |
The current project the dataset to be move belongs to | |
--name |
The name of the dataset to be moved |
search
Search datasets in the system by project, name, ID, and/or tags.
Returns list of all datasets in the system that match the search request, sorted by creation time.
clearml-data search [-h] [--ids [IDS [IDS ...]]] [--project PROJECT]
[--name NAME] [--tags [TAGS [TAGS ...]]]
Parameters
Name | Description | Optional |
---|---|---|
--ids |
A list of dataset IDs | |
--project |
The project name of the datasets | |
--name |
A dataset name or a partial name to filter datasets by | |
--tags |
A list of dataset user tags |
compare
Compare two datasets (target vs. source). The command returns a comparison summary that looks like this:
Comparison summary: 4 files removed, 3 files modified, 0 files added
clearml-data compare [-h] --source SOURCE --target TARGET [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--source |
Source dataset ID (used as baseline) | |
--target |
Target dataset ID (compare against the source baseline dataset) | |
--verbose |
Verbose report all file changes (instead of summary) |
squash
Squash multiple datasets into a single dataset version (merge down).
clearml-data squash [-h] --name NAME --ids [IDS [IDS ...]] [--storage STORAGE] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--name |
Create squashed dataset name | |
--ids |
Source dataset IDs to squash (merge down) | |
--storage |
Remote storage to use for the dataset files. Default: files_server | |
--verbose |
Verbose report all file changes (instead of summary) |
verify
Verify that the dataset content matches the data from the local source.
clearml-data verify [-h] [--id ID] [--folder FOLDER] [--filesize] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Specify dataset ID. Default: previously created/accessed dataset | |
--folder |
Specify dataset local copy (if not provided the local cache folder will be verified) | |
--filesize |
If True , only verify file size and skip hash checks (default: False ) |
|
--verbose |
Verbose report all file changes (instead of summary) |
get
Get a local copy of a dataset. By default, you get a read only cached folder, but you can get a mutable copy by using the
--copy
flag.
clearml-data get [-h] [--id ID] [--copy COPY] [--link LINK] [--part PART]
[--num-parts NUM_PARTS] [--overwrite] [--verbose]
Parameters
Name | Description | Optional |
---|---|---|
--id |
Specify dataset ID. Default: previously created / accessed dataset | |
--copy |
Get a writable copy of the dataset to a specific output folder | |
--link |
Create a soft link (not supported on Windows) to a read-only cached folder containing the dataset | |
--part |
Retrieve a partial copy of the dataset. Part number (0 to --num-parts -1) of total parts --num-parts . |
|
--num-parts |
Total number of parts to divide the dataset into. Notice, minimum retrieved part is a single chunk in a dataset (or its parents). Example: Dataset gen4, with 3 parents, each with a single chunk, can be divided into 4 parts | |
--overwrite |
If True , overwrite the target folder |
|
--verbose |
Verbose report all file changes (instead of summary) |
publish
Publish the dataset for public use. The dataset must be finalized before it is published.
clearml-data publish [-h] --id ID
Parameters
Name | Description | Optional |
---|---|---|
--id |
The dataset task ID to be published. |