* Small edits
* small edits
* small edits
* small edits
* small edits
* update GCP image
* Add 1.12.0 amis
* edit
* Add SDK 1.12.1 release notes
* update GCP image
* add clearml release notes 1.12
* Small edits
* pipeline remote execution
* add backup and restore note
* Revert "pipeline remote execution"
This reverts commit 789f07eb29
.
* edits
* Add `--interactive` flag to clearml-session
* Small edits
* Update images
* Update images
* remove space
* image edits
* hyperdataset image update
* Update image
* update image
* Fix "examples_audio_preprocessing_example_07"
* edit image
* edit images
* Edit images
* Edit image
* Update images
* Update images
* Update images
* Update AWS autoscaler image
* Update AWS autoscaler image
* update images
1.9 KiB
title |
---|
MMCV |
:::tip If you are not already using ClearML, see Getting Started for setup instructions. :::
MMCV is a computer vision framework developed by OpenMMLab. You can integrate ClearML into your
code using the mmcv
package's ClearMLLoggerHook
class. This class is used to create a ClearML Task and to automatically log metrics.
For example, the following code sets up the configuration for logging metrics periodically to ClearML, and then registers
the ClearML hook to a runner,
which manages training in mmcv
:
log_config = dict(
interval=100,
hooks=[
dict(
type='ClearMLLoggerHook',
init_kwargs=dict(
project_name='examples',
task_name='OpenMMLab cifar10',
output_uri=True
)
),
]
)
# register hooks to runner and those hooks will be invoked automatically
runner.register_training_hooks(
lr_config=lr_config,
optimizer_config=optimizer_config,
checkpoint_config=checkpoint_config,
log_config=log_config # ClearMLLogger hook
)
The init_kwargs
dictionary can include any parameter from Task.init()
.
This creates a ClearML Task OpenMMLab cifar10
in the examples
project.
You can view the captured metrics in the experiment's Scalars tab in the WebApp.
See MMCV code example here.