clearml-docs/docs/release_notes/ver_0_13.md
2021-05-14 02:48:51 +03:00

126 lines
6.2 KiB
Markdown

---
title: Version 0.13
---
:::important
**Trains** is now **ClearML**.
:::
## Version 0.13.3
### Trains
**Features and Bug Fixes**
* Add a binding for `tensorboard.summarywriter.addscalars`
* Add the `tensorboard_single_series_per_graph` method, which supports separate plots for each TensorBoard scalar.
* Add the `Task.set_base_docker` and `Task.get_base_docker` methods for the base Docker image used by **Trains Agent**.
* Add support for the standard OS environment variables to obtain default credentials for:
* AWS: `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_DEFAULT_REGION`.
* Azure Storage: `AZURE_STORAGE_ACCOUNT` and `AZURE_STORAGE_KEY`.
* Google Cloud Storage: `GOOGLE_APPLICATION_CREDENTIALS`.
* Add the `Task.get_parameters_as_dict` and `Task.set_parameters_as_dict` methods supporting get / set of parameters from referenced Tasks (use the `Task.get_task` to get a reference).
* Make sure `Task.connect` always returns the connected instance passed to it.
* `tensorflow_gpu` takes precedence over `tensorflow` when Trains detects installed packages to record experiment dependencies.
* Remove title and series naming restrictions (allow `$` and `.`) when reporting metrics.
* Fix incorrect printouts in initialization wizard and upgrade notifications.
* Fix debug images URL for uploaded files with `%` in their name.
### Trains Agent
**Features and Bug Fixes**
* Allow providing queue names instead of queue IDs in daemon mode.
* Improve Docker mode:
* Support running as a specific user inside a docker using the `TRAINS_AGENT_EXEC_USER` environment flag.
* Pass the correct GPU limit when skipping gpus flag.
* Add the `--force-current-version` daemon command-line flag.
* Add K8s/trains glue service example.
* Add K8s support in daemon mode.
* Running inside a K8s pod.
* Mounting dockerized experiment folders to host.
* Allow a specific network for the docker.
* Add default storage environment vars (for AWS, GS and Azure) to generated agent configuration.
* Improve Unicode/UTF stdout handling.
## Version 0.13.2
### Trains
**Features and Bug Fixes**
* Allow reporting a pre-uploaded image url in `Logger.report_image()`
using the `Logger.report_image.params.url` parameter.
* Add support for Git repositories without a `.git` suffix, for example Azure Repos.
* Improve conda support.
* Improve hyperparameters [argparser](https://docs.python.org/3/library/argparse.html) integration.
* Fix [savefig](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html) patching in matplotlib binding.
* Fix logs, events and Jupyter Notebook flushing on exit.
## Version 0.13.1
### Trains
**Features and Bug Fixes**
* Add support for `pyplot.savefig` and `pylab.savefig` in matplotlib binding.
* Add support for SageMaker.
* Improve configuration wizard.
* Try to make sure TensorBoard is available when using torch.
* Do not store keras model network design if it cannot be serialized ([GitHub Issue #72](https://github.com/allegroai/trains/issues/72)).
* Fix matplotlib binding support.
## Version 0.13.0
### Trains
**Features and Bug Fixes**
* Add support for [trains-server](https://github.com/allegroai/trains-server) v0.13.0.
* Add support for nested (non-main) tasks.
* Add warning when automatic argument parser binding cannot be turned off.
* Add `Task.upload_artifact` support for external URLs (pre-uploaded).
* Add support for special characters in hyperparameter keys (white-spaces, `.` and `$`) ([GitHub Issue #69](https://github.com/allegroai/trains/issues/69)).
* Add support for PyTorch `.pt` model files.
* Calculate data-audit artifact uniqueness by user-criteria ([GitHub Issue #45](https://github.com/allegroai/trains/issues/45)).
* Use an environment variable for setting a default docker image ([GitHub Issue #58](https://github.com/allegroai/trains/issues/58)).
* Improve `trains-init` configuration wizard.
* Update examples for new joblib versions.
* Update jupyter example to TensorFlow 2.
* Fix task clone to copy only input artifacts.
* Fix matplotlib import binding when using `Agg` backend.
* Fix `ProxyDictPreWrite` and `ProxyDictPostWrite` so they can be pickled correctly ([GitHub Issue #72](https://github.com/allegroai/trains/issues/72)).
* Fix requests issue in Python 2.7 that can cause a deadlock when importing netrc.
* Fix argparser binding sub-parser and type casting support ([GitHub Issue #74](https://github.com/allegroai/trains/issues/74)).
* Fix argparser binding Python 2.7 unicode handling.
* Fix unsynced connected hyperparameters overridden during remote execution.
### Trains Server
**Features and Bug Fixes**
* Add parallel coordinates hyperparameter comparison, available under **Compare Experiments** **>** **HYPER PARAMETERS**
**>** **Parallel Coordinates** (in the drop-down) ([GitHub Issue #53](https://github.com/allegroai/trains/issues/53)).
* Add encoding of experiment table view settings in URL to allow sharing, using browser URL copy / paste.
* Add loguru (ANSI color) support ([GitHub Issue #29](https://github.com/allegroai/trains/issues/29)).
* Add support for special characters in hyperparameter keys (white-spaces, `.` and `$`) ([GitHub Issue #69](https://github.com/allegroai/trains/issues/69)).
* Add optional anonymous daily usage statistics (help us improve Trains Server):
* Disabled by default.
* Requires user opt-in.
* Single averages report per day.
* Reports average load metrics per day (CPU / memory).
* Reports average workload per day (amount and average duration of queues, agents and experiments).
* Improve experiment table filtering indication.
* Improve model view to allow navigating to its generating experiment.
* Fix experiment comparison to distinguish between experiments with the same name ([GitHub Issue #52](https://github.com/allegroai/trains/issues/52)).
* Fix Web UI compare plots bug ([GitHub Issue #55](https://github.com/allegroai/trains/issues/55) and [GitHub Issue #73](https://github.com/allegroai/trains/issues/73)).
### Trains Agent
**Features**
* Add support for Docker pre-installed pytorch versions that do not exist on PyPI/PyTorch.org.
* Add AWS dynamic cluster management service.
* Add support for various event query endpoints in APIClient.
* Improve the configuration wizard.