clearml-docs/docs/clearml_data/clearml_data_cli.md
2022-05-10 10:46:15 +03:00

18 KiB
Raw Blame History

title
CLI

:::important This page covers clearml-data, ClearML's file-based data management solution. See Hyper-Datasets for ClearML's advanced queryable dataset management solution. :::

The clearml-data utility is a CLI tool for controlling and managing your data with ClearML.

The following page provides a reference to clearml-data's CLI commands.

create

Creates a new dataset.

clearml-data create [-h] [--parents [PARENTS [PARENTS ...]]] [--project PROJECT] 
                    --name NAME [--tags [TAGS [TAGS ...]]]

Parameters

Name Description Optional
--name Dataset's name No
--project Dataset's project No
--parents IDs of the dataset's parents. The dataset inherits all of its parents' content. Multiple parents can be entered, but they are merged in the order they were entered Yes
--tags Dataset user tags. The dataset can be labeled, which can be useful for organizing datasets Yes

:::tip Dataset ID

  • To locate a dataset's ID, go to the dataset task's info panel in the WebApp. In the top of the panel, to the right of the dataset task name, click ID and the dataset ID appears.

  • clearml-data works in a stateful mode so once a new dataset is created, the following commands do not require the --id flag. :::


add

Add individual files or complete folders to the dataset.

clearml-data add [-h] [--id ID] [--dataset-folder DATASET_FOLDER]
                 [--files [FILES [FILES ...]]] [--links [LINKS [LINKS ...]]] 
                 [--non-recursive] [--verbose]

Parameters

Name Description Optional
--id Dataset's ID. Default: previously created / accessed dataset Yes
--files Files / folders to add. Wildcard selection is supported, for example: ~/data/*.jpg ~/data/json. Items will be uploaded to the datasets designated storage. Yes
--links Files / folders link to add. Supports s3, gs, azure links. Example: s3://bucket/data azure://bucket/folder. Items remain in their original location. Yes
--dataset-folder Dataset base folder to add the files to in the dataset. Default: dataset root Yes
--non-recursive Disable recursive scan of files Yes
--verbose Verbose reporting Yes

remove

Remove files/links from the dataset.

clearml-data remove [-h] [--id ID] [--files [FILES [FILES ...]]] 
                    [--non-recursive] [--verbose]

Parameters

Name Description Optional
--id Dataset's ID. Default: previously created / accessed dataset Yes
--files Files / folders to remove (wildcard selection is supported, for example: ~/data/*.jpg ~/data/json). Notice: file path is the path within the dataset, not the local path. For links, you can specify their URL (e.g. s3://bucket/data) No
--non-recursive Disable recursive scan of files Yes
--verbose Verbose reporting Yes

upload

Upload the local dataset changes to the server. By default, it's uploaded to the ClearML Server. It's possible to specify a different storage medium by entering an upload destination, such as s3://bucket, gs://, azure://, /mnt/shared/.

clearml-data upload [-h] [--id ID] [--storage STORAGE] [--chunk-size CHUNK_SIZE] 
                    [--verbose]

Parameters

Name Description Optional
--id Dataset's ID. Default: previously created / accessed dataset Yes
--storage Remote storage to use for the dataset files. Default: files_server Yes
--chunk-size Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. Yes
--verbose Verbose reporting Yes

close

Finalize the dataset and makes it ready to be consumed. This automatically uploads all files that were not previously uploaded. Once a dataset is finalized, it can no longer be modified.

clearml-data close [-h] [--id ID] [--storage STORAGE] [--disable-upload]
                   [--chunk-size CHUNK_SIZE] [--verbose]

Parameters

Name Description Optional
--id Dataset's ID. Default: previously created / accessed dataset Yes
--storage Remote storage to use for the dataset files. Default: files_server Yes
--disable-upload Disable automatic upload when closing the dataset Yes
--chunk-size Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. Yes
--verbose Verbose reporting Yes

sync

Sync a folder's content with ClearML. This option is useful in case a user has a single point of truth (i.e. a folder) which updates from time to time.

Once an update should be reflected in ClearML's system, call clearml-data sync and pass the folder path, and the changes (either file addition, modification and removal) will be reflected in ClearML.

This command also uploads the data and finalizes the dataset automatically.

clearml-data sync [-h] [--id ID] [--dataset-folder DATASET_FOLDER] --folder FOLDER
                  [--parents [PARENTS [PARENTS ...]]] [--project PROJECT] [--name NAME]
                  [--tags [TAGS [TAGS ...]]] [--storage STORAGE] [--skip-close]
                  [--chunk-size CHUNK_SIZE] [--verbose]

Parameters

Name Description Optional
--id Dataset's ID. Default: previously created / accessed dataset Yes
--dataset-folder Dataset base folder to add the files to (default: Dataset root) Yes
--folder Local folder to sync. Wildcard selection is supported, for example: ~/data/*.jpg ~/data/json No
--storage Remote storage to use for the dataset files. Default: files_server Yes
--parents IDs of the dataset's parents (i.e. merge all parents). All modifications made to the folder since the parents were synced will be reflected in the dataset Yes
--project If creating a new dataset, specify the dataset's project name Yes
--name If creating a new dataset, specify the dataset's name Yes
--tags Dataset user tags Yes
--skip-close Do not auto close dataset after syncing folders Yes
--chunk-size Set dataset artifact upload chunk size in MB. Default 512, (pass -1 for a single chunk). Example: 512, dataset will be split and uploaded in 512 MB chunks. Yes
--verbose Verbose reporting Yes

list

List a dataset's contents.

clearml-data list [-h] [--id ID] [--project PROJECT] [--name NAME]
                  [--filter [FILTER [FILTER ...]]] [--modified]

Parameters

Name Description Optional
--id Dataset ID whose contents will be shown (alternatively, use project / name combination). Default: previously accessed dataset Yes
--project Specify dataset project name (if used instead of ID, dataset name is also required) Yes
--name Specify dataset name (if used instead of ID, dataset project is also required) Yes
--filter Filter files based on folder / wildcard. Multiple filters are supported. Example: folder/date_*.json folder/sub-folder Yes
--modified Only list file changes (add / remove / modify) introduced in this version Yes

delete

Delete an entire dataset from ClearML. This can also be used to delete a newly created dataset.

This does not work on datasets with children.

clearml-data delete [-h] [--id ID] [--force]

Parameters

Name Description Optional
--id ID of dataset to be deleted. Default: previously created / accessed dataset that hasn't been finalized yet Yes
--force Force dataset deletion even if other dataset versions depend on it Yes

Search datasets in the system by project, name, ID, and/or tags.

Returns list of all datasets in the system that match the search request, sorted by creation time.

clearml-data search [-h] [--ids [IDS [IDS ...]]] [--project PROJECT] 
                    [--name NAME] [--tags [TAGS [TAGS ...]]]

Parameters

Name Description Optional
--ids A list of dataset IDs
--project The project name of the datasets
--name A dataset name or a partial name to filter datasets by
--tags A list of dataset user tags

compare

Compare two datasets (target vs. source). The command returns a comparison summary that looks like this: Comparison summary: 4 files removed, 3 files modified, 0 files added

clearml-data compare [-h] --source SOURCE --target TARGET [--verbose]

Parameters

Name Description Optional
--source Source dataset ID (used as baseline) No
--target Target dataset ID (compare against the source baseline dataset) No
--verbose Verbose report all file changes (instead of summary) Yes

squash

Squash multiple datasets into a single dataset version (merge down).

clearml-data squash [-h] --name NAME --ids [IDS [IDS ...]] [--storage STORAGE] [--verbose]

Parameters

Name Description Optional
--name Create squashed dataset name No
--ids Source dataset IDs to squash (merge down) No
--storage Remote storage to use for the dataset files. Default: files_server Yes
--verbose Verbose report all file changes (instead of summary) Yes

verify

Verify that the dataset content matches the data from the local source.

clearml-data verify [-h] [--id ID] [--folder FOLDER] [--filesize] [--verbose]

Parameters

Name Description Optional
--id Specify dataset ID. Default: previously created/accessed dataset Yes
--folder Specify dataset local copy (if not provided the local cache folder will be verified) Yes
--filesize If True, only verify file size and skip hash checks (default: False) Yes
--verbose Verbose report all file changes (instead of summary) Yes

get

Get a local copy of a dataset. By default, you get a read only cached folder, but you can get a mutable copy by using the --copy flag.

clearml-data get [-h] [--id ID] [--copy COPY] [--link LINK] [--part PART]
                 [--num-parts NUM_PARTS] [--overwrite] [--verbose]

Parameters

Name Description Optional
--id Specify dataset ID. Default: previously created / accessed dataset Yes
--copy Get a writable copy of the dataset to a specific output folder Yes
--link Create a soft link (not supported on Windows) to a read-only cached folder containing the dataset Yes
--part Retrieve a partial copy of the dataset. Part number (0 to --num-parts-1) of total parts --num-parts. Yes
--num-parts Total number of parts to divide the dataset into. Notice, minimum retrieved part is a single chunk in a dataset (or its parents). Example: Dataset gen4, with 3 parents, each with a single chunk, can be divided into 4 parts Yes
--overwrite If True, overwrite the target folder Yes
--verbose Verbose report all file changes (instead of summary) Yes

publish

Publish the dataset for public use. The dataset must be finalized before it is published.

clearml-data publish [-h] --id ID

Parameters

Name Description Optional
--id The dataset task ID to be published. No