3.6 KiB
| title |
|---|
| build |
This reference page provides detailed information about ClearML Agent's build subcommand, which you can use to create
a worker environment without executing the experiment.
Syntax
clearml-agent build [-h] --id TASK_ID [--target TARGET]
[--install-globally]
[--docker [DOCKER [DOCKER ...]]] [--force-docker]
[--python-version PYTHON_VERSION]
[--entry-point {reuse_task,clone_task}] [-O]
[--git-user GIT_USER] [--git-pass GIT_PASS]
[--log-level {DEBUG,INFO,WARN,WARNING,ERROR,CRITICAL}]
[--gpus GPUS] [--cpu-only]
Arguments
id
(mandatory)
- Build a worker environment for this Task ID.
cpu-only
- Disable GPU access for the Docker container.
docker
-
Docker mode. A Docker container that a worker will execute at launch.
To specify the image name and optional arguments, either:
- Use
--docker <image_name> <args>on the command line, or - Use
--dockeron the command line, and specify the image name and arguments in the configuration file.
Environment variable settings for Dockers:
CLEARML_DOCKER_SKIP_GPUS_FLAG- Ignore thegpusflag inside the Docker container. This also allows you to execute ClearML Agent using Docker versions earlier than 19.03.NVIDIA_VISIBLE_DEVICES- Limit GPU visibility for the Docker container.CLEARML_AGENT_GIT_USERandCLEARML_AGENT_GIT_PASS- Pass these credentials to the Docker container at execution.
To limit GPU visibility for Docker, set the
NVIDIA_VISIBLE_DEVICESenvironment variable. - Use
entry-point
-
Used in conjunction with
--docker, indicates how to run the Task specified bytask-idon Docker startup.The
entry-pointoptions are:reuse- Overwrite the existing Task data.clone_task- Clone the Task, and execute the cloned Task.
force-docker
- Force using the agent-specified docker image (either explicitly in the
--dockerargument or using the agent's default docker image). If provided, the agent will not use any docker container information stored in the task itself (defaultFalse)
git-pass
- Git password for repository access.
git-user
- Git username for repository access.
gpus
-
Specify the active GPUs for the Docker containers to use. These are the same GPUs set in the
NVIDIA_VISIBLE_DEVICESenvironment variable.For example:
--gpus 0--gpu 0,1,2--gpus all
h, help
- Get help for this command.
install-globally
- Install the required Python packages before creating the virtual environment. Use
agent.package_manager.system_site_packagesto control the installation of the system packages. When--dockeris used,install-globallyis always true.
log-level
-
SDK log level. The values are:
DEBUGINFOWARNWARNINGERRORCRITICAL
python-version
- Virtual environment Python version to use.
O
- Compile optimized pyc code (see python documentation). Repeat for more optimization.
target
- The target folder for the virtual environment and source code that will be used at launch.