clearml-docs/docs/clearml_serving/clearml_serving_cli.md
2022-05-01 10:06:09 +03:00

17 KiB

title
CLI

The clearml-serving utility is a CLI tool for model deployment and orchestration.

The following page provides a reference for clearml-serving's CLI commands:

  • list - List running Serving Services
  • create - Create a new Serving Service
  • metrics - Configure inference metrics Service
  • config - Configure a new Serving Service
  • model - Configure model endpoints for a running Service

Global Parameters

clearml-serving [-h] [--debug] [--id ID] {list,create,metrics,config,model} 
Name Description Optional
--id Serving Service (Control plane) Task ID to configure (if not provided automatically detect the running control plane Task) No
--debug Print debug messages Yes

:::info Service ID The Serving Service's ID (--id) is required to execute the metrics, config, and model commands. :::

list

List running Serving Services.

clearml-serving list [-h]

create

Create a new Serving Service.

clearml-serving create [-h] [--name NAME] [--tags TAGS [TAGS ...]] [--project PROJECT]

Parameters

Name Description Optional
--name Serving service's name. Default: Serving-Service No
--project Serving service's project. Default: DevOps No
--tags Serving service's user tags. The serving service can be labeled, which can be useful for organizing Yes

metrics

Configure inference metrics Service.

clearml-serving metrics [-h] {add,remove,list}

add

Add/modify metric for a specific endpoint.

clearml-serving metrics add [-h] --endpoint ENDPOINT [--log-freq LOG_FREQ]
                            [--variable-scalar VARIABLE_SCALAR [VARIABLE_SCALAR ...]]
                            [--variable-enum VARIABLE_ENUM [VARIABLE_ENUM ...]]
                            [--variable-value VARIABLE_VALUE [VARIABLE_VALUE ...]]

Parameters

Name Description Optional
--endpoint Metric endpoint name including version (e.g. "model/1" or a prefix "model/*"). Notice: it will override any previous endpoint logged metrics No
--log-freq Logging request frequency, between 0.0 to 1.0. Example: 1.0 means all requests are logged, 0.5 means half of the requests are logged if not specified. To use global logging frequency, see config --metric-log-freq Yes
--variable-scalar Add float (scalar) argument to the metric logger, <name>=<histogram>. Example: with specific buckets: "x1=0,0.2,0.4,0.6,0.8,1" or with min/max/num_buckets "x1=0.0/1.0/5" Yes
--variable-enum Add enum (string) argument to the metric logger, <name>=<optional_values>. Example: "detect=cat,dog,sheep" Yes
--variable-value Add non-samples scalar argument to the metric logger, <name>. Example: "latency" Yes

remove

Remove metric from a specific endpoint.

clearml-serving metrics remove [-h] [--endpoint ENDPOINT]
                               [--variable VARIABLE [VARIABLE ...]]

Parameters

Name Description Optional
--endpoint Metric endpoint name including version (e.g. "model/1" or a prefix "model/*") No
--variable Remove (scalar/enum) argument from the metric logger, <name> example: "x1" Yes

list

List metrics logged on all endpoints.

clearml-serving metrics list [-h]

config

Configure a new Serving Service.

clearml-serving config [-h] [--base-serving-url BASE_SERVING_URL]
                       [--triton-grpc-server TRITON_GRPC_SERVER]
                       [--kafka-metric-server KAFKA_METRIC_SERVER]
                       [--metric-log-freq METRIC_LOG_FREQ]

Parameters

Name Description Optional
--base-serving-url External base serving service url. Example: http://127.0.0.1:8080/serve Yes
--triton-grpc-server External ClearML-Triton serving container gRPC address. Example: 127.0.0.1:9001 Yes
--kafka-metric-server External Kafka service url. Example: 127.0.0.1:9092 Yes
--metric-log-freq Set default metric logging frequency between 0.0 to 1.0. 1.0 means that 100% of all requests are logged Yes

model

Configure model endpoints for an already running Service.

clearml-serving model [-h] {list,remove,upload,canary,auto-update,add}

list

List current models.

clearml-serving model list [-h]

remove

Remove model by its endpoint name.

clearml-serving model remove [-h] [--endpoint ENDPOINT]

Parameter

Name Description Optional
--endpoint Model endpoint name No

upload

Upload and register model files/folder.

clearml-serving model upload [-h] --name NAME [--tags TAGS [TAGS ...]] --project PROJECT
                             [--framework {scikit-learn,xgboost,lightgbm,tensorflow,pytorch}]
                             [--publish] [--path PATH] [--url URL]
                             [--destination DESTINATION]

Parameters

Name Description Optional
--name Specifying the model name to be registered in No
--tags Add tags to the newly created model Yes
--project Specify the project for the model to be registered in No
--framework Specify the model framework. Options are: "scikit-learn", "xgboost", "lightgbm", "tensorflow", "pytorch" Yes
--publish Publish the newly created model (change model state to "published" (i.e. locked and ready to deploy) Yes
--path Specify a model file/folder to be uploaded and registered Yes
--url Specify an already uploaded model url (e.g. s3://bucket/model.bin, gs://bucket/model.bin) Yes
--destination Specify the target destination for the model to be uploaded (e.g. s3://bucket/folder/, gs://bucket/folder/) Yes

canary

Add model Canary/A/B endpoint.

clearml-serving model canary [-h] [--endpoint ENDPOINT] [--weights WEIGHTS [WEIGHTS ...]]
                             [--input-endpoints INPUT_ENDPOINTS [INPUT_ENDPOINTS ...]]
                             [--input-endpoint-prefix INPUT_ENDPOINT_PREFIX]

Parameters

Name Description Optional
--endpoint Model canary serving endpoint name (e.g. my_model/latest) Yes
--weights Model canary weights (order matching model ep), (e.g. 0.2 0.8) Yes
--input-endpoints Model endpoint prefixes, can also include version (e.g. my_model, my_model/v1) Yes
--input-endpoint-prefix Model endpoint prefix, lexicographic order or by version <int> (e.g. my_model/1, my_model/v1), where the first weight matches the last version. Yes

auto-update

Add/Modify model auto-update service.

clearml-serving model auto-update [-h] [--endpoint ENDPOINT] --engine ENGINE
                                  [--max-versions MAX_VERSIONS] [--name NAME]
                                  [--tags TAGS [TAGS ...]] [--project PROJECT]
                                  [--published] [--preprocess PREPROCESS]
                                  [--input-size INPUT_SIZE [INPUT_SIZE ...]]
                                  [--input-type INPUT_TYPE] [--input-name INPUT_NAME]
                                  [--output-size OUTPUT_SIZE [OUTPUT_SIZE ...]]
                                  [--output_type OUTPUT_TYPE] [--output-name OUTPUT_NAME]
                                  [--aux-config AUX_CONFIG [AUX_CONFIG ...]]

Parameters

Name Description Optional
--endpoint Base model endpoint (must be unique) No
--engine Model endpoint serving engine (triton, sklearn, xgboost, lightgbm) No
--max-versions Max versions to store (and create endpoints) for the model. Highest number is the latest version Yes
--name Specify model name to be selected and auto-updated (notice regexp selection use "$name^" for exact match) Yes
--tags Specify tags to be selected and auto-updated Yes
--project Specify model project to be selected and auto-updated Yes
--published Only select published model for auto-update Yes
--preprocess Specify Pre/Post processing code to be used with the model (point to local file / folder) - this should hold for all the models Yes
--input-size Specify the model matrix input size [Rows x Columns X Channels etc ...] Yes
--input-type Specify the model matrix input type. Examples: uint8, float32, int16, float16 etc. Yes
--input-name Specify the model layer pushing input into. Example: layer_0 Yes
--output-size Specify the model matrix output size [Rows x Columns X Channels etc ...] Yes
--output_type Specify the model matrix output type. Examples: uint8, float32, int16, float16 etc. Yes
--output-name Specify the model layer pulling results from. Examples: layer_99 Yes
--aux-config Specify additional engine specific auxiliary configuration in the form of key=value. Example: platform=onnxruntime_onnx response_cache.enable=true max_batch_size=8. Notice: you can also pass a full configuration file (e.g. Triton "config.pbtxt") Yes

add

Add/Update model.

clearml-serving model add [-h] --engine ENGINE --endpoint ENDPOINT [--version VERSION]
                          [--model-id MODEL_ID] [--preprocess PREPROCESS]
                          [--input-size INPUT_SIZE [INPUT_SIZE ...]]
                          [--input-type INPUT_TYPE] [--input-name INPUT_NAME]
                          [--output-size OUTPUT_SIZE [OUTPUT_SIZE ...]]
                          [--output-type OUTPUT_TYPE] [--output-name OUTPUT_NAME]
                          [--aux-config AUX_CONFIG [AUX_CONFIG ...]] [--name NAME]
                          [--tags TAGS [TAGS ...]] [--project PROJECT] [--published]

Parameters

Name Description Optional
--engine Model endpoint serving engine (triton, sklearn, xgboost, lightgbm) No
--endpoint Base model endpoint (must be unique) No
--version Model endpoint version (default: None) Yes
model-id Specify a model ID to be served No
--preprocess Specify Pre/Post processing code to be used with the model (point to local file / folder) - this should hold for all the models Yes
--input-size Specify the model matrix input size [Rows x Columns X Channels etc ...] Yes
--input-type Specify the model matrix input type. Examples: uint8, float32, int16, float16 etc. Yes
--input-name Specify the model layer pushing input into. Example: layer_0 Yes
--output-size Specify the model matrix output size [Rows x Columns X Channels etc ...] Yes
--output_type Specify the model matrix output type. Examples: uint8, float32, int16, float16 etc. Yes
--output-name Specify the model layer pulling results from. Examples: layer_99 Yes
--aux-config Specify additional engine specific auxiliary configuration in the form of key=value. Example: platform=onnxruntime_onnx response_cache.enable=true max_batch_size=8. Notice: you can also pass a full configuration file (e.g. Triton "config.pbtxt") Yes
--name Instead of specifying model-id select based on model name Yes
--tags Specify tags to be selected and auto-updated Yes
--project Instead of specifying model-id select based on model project Yes
--published Instead of specifying model-id select based on model published Yes