mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-16 14:02:49 +00:00
Small edits (#645)
This commit is contained in:
parent
1ad3ce30d6
commit
f20a5f07a5
@ -26,7 +26,7 @@ Train a model. Work from your local `clearml-serving` repository's root.
|
||||
`python3 examples/sklearn/train_model.py`.
|
||||
|
||||
During execution, ClearML automatically registers the sklearn model and uploads it into the model repository.
|
||||
For Manual model registration see [here](#registering-and-deploying-new-models-manually)
|
||||
For information about explicit model registration, see [Registering and Deploying New Models Manually](#registering-and-deploying-new-models-manually).
|
||||
|
||||
### Step 2: Register Model
|
||||
|
||||
|
@ -181,7 +181,7 @@ or check these pages out:
|
||||
- Structure your work and put it into [Pipelines](../../pipelines/pipelines.md)
|
||||
- Improve your experiments with [Hyperparameter Optimization](../../fundamentals/hpo.md)
|
||||
- Check out ClearML's integrations with your favorite ML frameworks like [TensorFlow](../../integrations/tensorflow.md),
|
||||
[PyTorch](../../guides/frameworks/pytorch/pytorch_mnist.md), [Keras](../../guides/frameworks/keras/keras_tensorboard.md),
|
||||
[PyTorch](../../integrations/pytorch.md), [Keras](../../integrations/keras.md),
|
||||
and more
|
||||
|
||||
## YouTube Playlist
|
||||
|
@ -87,7 +87,7 @@ additional tools, like argparse, TensorBoard, and matplotlib:
|
||||
|
||||
* [PyTorch MNIST](../guides/frameworks/pytorch/pytorch_mnist.md) - Demonstrates ClearML automatically logging models created with PyTorch, and `argparse` command line parameters
|
||||
* [PyTorch with Matplotlib](../guides/frameworks/pytorch/pytorch_matplotlib.md) - Demonstrates ClearML’s automatic logging PyTorch models and matplotlib images. The images are stored in the resulting ClearML experiment's **Debug Samples**
|
||||
* [TensorBoard](../guides/frameworks/pytorch/pytorch_tensorboard.md) - Demonstrates ClearML automatically logging PyTorch models, and scalars, debug samples, and text logged using TensorBoard's `SummaryWriter`
|
||||
* [PyTorch with TensorBoard](../guides/frameworks/pytorch/pytorch_tensorboard.md) - Demonstrates ClearML automatically logging PyTorch models, and scalars, debug samples, and text logged using TensorBoard's `SummaryWriter`
|
||||
* [PyTorch TensorBoard Toy](../guides/frameworks/pytorch/tensorboard_toy_pytorch.md) - Demonstrates ClearML automatically logging debug samples logged using TensorBoard's `SummaryWriter`
|
||||
* [PyTorch TensorBoardX](../guides/frameworks/pytorch/pytorch_tensorboardx.md) - Demonstrates ClearML automatically logging PyTorch models, and scalars, debug samples, and text logged using TensorBoardX's `SummaryWriter`
|
||||
* [PyTorch Abseil](../guides/frameworks/pytorch/pytorch_abseil.md) - Demonstrates ClearML automatically logging PyTorch models and `absl.flags` parameters
|
||||
|
@ -139,7 +139,7 @@ def step_one(pickle_data_url: str, extra: int = 43):
|
||||
|
||||
* Callbacks - Control pipeline execution flow with callback functions
|
||||
* `pre_execute_callback` and `post_execute_callback` - Control pipeline flow with callback functions that can be called
|
||||
before and/or after a step’s execution. See [here](pipelines_sdk_tasks.md#pre_execute_callback--post_execute_callback).
|
||||
before and/or after a step’s execution. See [here](pipelines_sdk_tasks.md#pre_execute_callback-and-post_execute_callback).
|
||||
* `status_change_callback` - Callback function called when the status of a step changes. Use `node.job` to access the
|
||||
`ClearmlJob` object, or `node.job.task` to directly access the Task object. The signature of the function must look like this:
|
||||
```python
|
||||
|
@ -166,7 +166,7 @@ pipe.add_function_step(
|
||||
* `parents` – Optional list of parent steps in the pipeline. The current step in the pipeline will be sent for execution
|
||||
only after all the parent steps have been executed successfully.
|
||||
* `pre_execute_callback` and `post_execute_callback` - Control pipeline flow with callback functions that can be called
|
||||
before and/or after a step’s execution. See [here](#pre_execute_callback--post_execute_callback).
|
||||
before and/or after a step’s execution. See [here](#pre_execute_callback-and-post_execute_callback).
|
||||
* `monitor_models`, `monitor_metrics`, `monitor_artifacts` - see [here](#models-artifacts-and-metrics).
|
||||
|
||||
See [add_function_step](../references/sdk/automation_controller_pipelinecontroller.md#add_function_step) for all
|
||||
@ -174,7 +174,7 @@ arguments.
|
||||
|
||||
### Important Arguments
|
||||
|
||||
#### pre_execute_callback & post_execute_callback
|
||||
#### pre_execute_callback and post_execute_callback
|
||||
Callbacks can be utilized to control pipeline execution flow.
|
||||
|
||||
A `pre_execute_callback` function is called when the step is created, and before it is sent for execution. This allows a
|
||||
|
Loading…
Reference in New Issue
Block a user