mirror of
https://github.com/clearml/clearml-docs
synced 2025-06-26 18:17:44 +00:00
Change headings to title caps (#62)
This commit is contained in:
@@ -41,7 +41,7 @@ A frame filter contains the following criteria:
|
||||
|
||||
Use combinations of these frame filters to build sophisticated queries.
|
||||
|
||||
## Debiasing input data
|
||||
## Debiasing Input Data
|
||||
|
||||
Apply debiasing to each frame filter to adjust for an imbalance in input data. Ratios (weights) enable setting the proportion
|
||||
of frames that are inputted, according to any of the criteria in a frame filter, including ROI labels, frame metadata,
|
||||
@@ -52,7 +52,7 @@ you want to input the same number of both. To debias the data, create two frame
|
||||
of `1`, and the other for `nighttime` with a ratio of `5`. The Dataview will iterate approximately an equal number of
|
||||
SingleFrames for each.
|
||||
|
||||
## ROI Label mapping (label translation)
|
||||
## ROI Label Mapping (Label Translation)
|
||||
|
||||
ROI label mapping (label translation) applies to the new model. For example, apply mapping to:
|
||||
|
||||
@@ -60,12 +60,12 @@ ROI label mapping (label translation) applies to the new model. For example, app
|
||||
* Consolidate disparate datasets containing different names for the ROI.
|
||||
* Hide labeled objects from the training process.
|
||||
|
||||
## Class label enumeration
|
||||
## Class Label Enumeration
|
||||
|
||||
Define class labels for the new model and assign integers to each in order to maintain data conformity across multiple
|
||||
codebases and datasets. It is important to set enumeration values for all labels of importance.
|
||||
|
||||
## Data augmentation
|
||||
## Data Augmentation
|
||||
|
||||
On-the-fly data augmentation is applied to SingleFrames, transforming images without creating new data. Apply data augmentation
|
||||
in steps, where each step is composed of a method, an operation, and a strength as follows:
|
||||
@@ -99,7 +99,7 @@ in steps, where each step is composed of a method, an operation, and a strength
|
||||
* 1.0 - Medium (recommended)
|
||||
* 2.0 - High (strong)
|
||||
|
||||
## Iteration control
|
||||
## Iteration Control
|
||||
|
||||
The input data **iteration control** settings determine the order, number, timing, and reproducibility of the Dataview iterating
|
||||
SingleFrames. Depending upon the combination of iteration control settings, all SingleFrames may not be iterated, and some
|
||||
@@ -141,7 +141,7 @@ from allegroai import DataView, IterationOrder
|
||||
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
|
||||
```
|
||||
|
||||
### Adding queries
|
||||
### Adding Queries
|
||||
|
||||
To add a query to a DataView, use the `DataView.add_query` method and specify Dataset versions,
|
||||
ROI and / or frame queries, and other criteria.
|
||||
@@ -154,7 +154,7 @@ specify the queries.
|
||||
Multiple queries can be added to the same or different Dataset versions, each query with the same or different ROI
|
||||
and / or frame queries.
|
||||
|
||||
#### ROI queries:
|
||||
#### ROI Queries:
|
||||
|
||||
* ROI query for a single label
|
||||
|
||||
@@ -206,7 +206,7 @@ myDataView.add_query(dataset_name='myDataset', version_name='training',
|
||||
roi_query='label.keyword:\"Car\" AND NOT label.keyword:\"partly_occluded\"')
|
||||
```
|
||||
|
||||
#### Querying multiple Datasets and versions
|
||||
#### Querying Multiple Datasets and Versions
|
||||
|
||||
This example demonstrates an ROI query filtering for frames containing the ROI labels `car`, `truck`, or `bicycle`
|
||||
from two versions of one Dataset, and one version of another Dataset.
|
||||
@@ -234,7 +234,7 @@ myDataView.add_query(dataset_name='dataset_2',
|
||||
|
||||
```
|
||||
|
||||
#### Frame queries
|
||||
#### Frame Queries
|
||||
|
||||
Use frame queries to filter frames by ROI labels and / or frame metadata key-value pairs that a frame must include or
|
||||
exclude for the DataView to return the frame.
|
||||
@@ -252,13 +252,13 @@ myDataView.add_query(dataset_name='myDataset',
|
||||
```
|
||||
|
||||
|
||||
### Controlling query iteration
|
||||
### Controlling Query Iteration
|
||||
|
||||
Use `DataView.set_iteration_parameters` to manage the order, number, timing, and reproducibility of frames
|
||||
for training.
|
||||
|
||||
|
||||
#### Iterate frames infinitely
|
||||
#### Iterate Frames Infinitely
|
||||
|
||||
This example demonstrates creating a Dataview and setting its parameters to iterate infinitely until the script is
|
||||
manually terminated.
|
||||
@@ -271,7 +271,7 @@ myDataView = DataView()
|
||||
myDataView.set_iteration_parameters(order=IterationOrder.random, infinite=True)
|
||||
```
|
||||
|
||||
#### Iterate all frames matching the query
|
||||
#### Iterate All Frames Matching the Query
|
||||
This example demonstrates creating a DataView and setting its parameters to iterate and return all frames matching a query.
|
||||
|
||||
```python
|
||||
@@ -287,7 +287,7 @@ myDataView.add_query(dataset_name='myDataset',
|
||||
version_name='myVersion', roi_query='cat')
|
||||
```
|
||||
|
||||
#### Iterate a maximum number of frames
|
||||
#### Iterate a Maximum Number of Frames
|
||||
This example demonstrates creating a DataView and setting its parameters to iterate a specific number of frames. If the
|
||||
Dataset version contains fewer than that number of frames matching the query, then fewer are returned by the iterator.
|
||||
|
||||
@@ -301,7 +301,7 @@ myDataView.set_iteration_parameters(
|
||||
maximum_number_of_frames=5000)
|
||||
```
|
||||
|
||||
### Debiasing input data
|
||||
### Debiasing Input Data
|
||||
|
||||
Debias input data using the `DataView.add_query` method's `weight` argument to add weights. This
|
||||
is the same `DataView.add_query` that can be used to specify Dataset versions, and ROI queries and frame queries.
|
||||
|
||||
Reference in New Issue
Block a user