mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-06 06:05:44 +00:00
Change headings to title caps (#62)
This commit is contained in:
parent
de82df937e
commit
c2d8707572
@ -11,7 +11,7 @@ in the UI and send it for long-term training on a remote machine.
|
||||
|
||||
**If you are not that lucky**, this section is for you :)
|
||||
|
||||
## What does ClearML Session do?
|
||||
## What Does ClearML Session Do?
|
||||
`clearml-session` is a feature that allows to launch a session of JupyterLab and VS Code, and to execute code on a remote
|
||||
machine that better meets resource needs. With this feature, local links are provided, which can be used to access
|
||||
JupyterLab and VS Code on a remote machine over a secure and encrypted SSH connection. By default, the JupyterLab and
|
||||
@ -74,18 +74,18 @@ After entering a `clearml-session` command with all specifications:
|
||||
To run a session inside a Docker container, use the `--docker` flag and enter the docker image to use in the interactive
|
||||
session.
|
||||
|
||||
### Installing requirements
|
||||
### Installing Requirements
|
||||
`clearml-session` can install required Python packages when setting up the remote environment. A `requirement.txt` file
|
||||
can be attached to the command using `--requirements </file/location.txt>`.
|
||||
Alternatively, packages can be manually specified, using `--packages "<package_name>"`
|
||||
(for example `--packages "keras" "clearml"`), and they'll be automatically installed.
|
||||
|
||||
### Accessing a git repository
|
||||
### Accessing a Git Repository
|
||||
To access a git repository remotely, add a `--git-credentials` flag and set it to `true`, so the local .git-credentials
|
||||
file will be sent to the interactive session. This is helpful if working on private git repositories, and it allows for seamless
|
||||
cloning and tracking of git references, including untracked changes.
|
||||
|
||||
### Re-launching and shutting down sessions
|
||||
### Re-launching and Shutting Down Sessions
|
||||
If a `clearml-session` was launched locally and is still running on a remote machine, users can easily reconnect to it.
|
||||
To reconnect to a previous session, execute `clearml-session` with no additional flags, and the option of reconnecting
|
||||
to an existing session will show up:
|
||||
@ -106,7 +106,7 @@ Connect to session [0-1] or 'N' to skip
|
||||
To shut down a remote session, which will free the `clearml-agent` and close the CLI, enter "Shutdown". If a session
|
||||
is shutdown, there is no option to reconnect to it.
|
||||
|
||||
### Connecting to an existing session
|
||||
### Connecting to an Existing Session
|
||||
If a `clearml-session` is running remotely, it's possible to continue working on the session from any machine.
|
||||
When `clearml-session` is launched, it initializes a task with a unique ID in the ClearML Server.
|
||||
|
||||
@ -117,7 +117,7 @@ To connect to an existing session:
|
||||
1. Click on the JupyterLab / VS Code link that is outputted, or connect directly to the SSH session
|
||||
|
||||
|
||||
### Starting a debugging session
|
||||
### Starting a Debugging Session
|
||||
Previously executed experiments in the ClearML system can be debugged on a remote interactive session.
|
||||
Input into `clearml-session` the ID of a Task to debug, then `clearml-session` clones the experiment's git repository and
|
||||
replicates the environment on a remote machine. Then the code can be interactively executed and debugged on JupyterLab / VS Code.
|
||||
@ -133,7 +133,7 @@ The Task must be connected to a git repository, since currently single script de
|
||||
1. In JupyterLab / VS Code, access the experiment's repository in the `environment/task_repository` folder.
|
||||
|
||||
|
||||
### Command line options
|
||||
### Command Line Options
|
||||
|
||||
<div className="tbl-cmd">
|
||||
|
||||
|
@ -128,7 +128,7 @@ Install ClearML Agent as a system Python package and not in a Python virtual env
|
||||
|
||||
1. Optionally, configure **ClearML** options for **ClearML Agent** (default docker, package manager, etc.). See the [ClearML Configuration Reference](configs/clearml_conf.md).
|
||||
|
||||
### Adding ClearML Agent to a configuration file
|
||||
### Adding ClearML Agent to a Configuration File
|
||||
|
||||
In case a `clearml.conf` file already exists, add a few ClearML Agent specific configurations to it.<br/>
|
||||
|
||||
@ -297,7 +297,7 @@ In case a `clearml.conf` file already exists, add a few ClearML Agent specific c
|
||||
|
||||
## Execution
|
||||
|
||||
### Spinning up an Agent
|
||||
### Spinning Up an Agent
|
||||
|
||||
#### Executing an Agent
|
||||
To execute an agent, listening to a queue, run:
|
||||
@ -345,17 +345,17 @@ clearml-agent daemon --detached --queue group_a group_b --order-fairness --gpus
|
||||
It will make sure the agent will pull from the “group_a” queue, then from “group_b”, then back to “group_a”, etc. This ensures
|
||||
that “group A” or ”group_b” will not be able to starve one another of resources.
|
||||
|
||||
### Explicit Task execution
|
||||
### Explicit Task Execution
|
||||
|
||||
ClearML Agent can also execute specific tasks directly, without listening to a queue.
|
||||
|
||||
#### Execute a Task without queue
|
||||
#### Execute a Task without Queue
|
||||
|
||||
Execute a Task with a `clearml-agent` worker without a queue.
|
||||
```bash
|
||||
clearml-agent execute --id <task-id>
|
||||
```
|
||||
#### Clone a Task and execute the cloned Task
|
||||
#### Clone a Task and Execute the Cloned Task
|
||||
|
||||
Clone the specified Task and execute the cloned Task with a `clearml-agent` worker without a queue.
|
||||
```bash
|
||||
@ -584,7 +584,7 @@ compute resources provided by google colab and send experiments for execution on
|
||||
Check out [this](guides/ide/google_colab.md) tutorial on how to run a ClearML Agent on Google Colab!
|
||||
|
||||
|
||||
## Scheduling working hours
|
||||
## Scheduling Working Hours
|
||||
|
||||
:::important
|
||||
Available with the ClearML Enterprise offering
|
||||
@ -603,7 +603,7 @@ Override worker schedules by:
|
||||
* Setting runtime properties to force a worker on or off
|
||||
* Tagging a queue on or off
|
||||
|
||||
### Running clearml-agent with a schedule (command line)
|
||||
### Running clearml-agent with a Schedule (Command Line)
|
||||
|
||||
Set a schedule for a worker from the command line when running `clearml-agent`. Two properties enable setting working hours:
|
||||
|
||||
@ -632,7 +632,7 @@ For example:
|
||||
* `"20-00,00-08 SUN"` - 8 PM to midnight and midnight to 8 AM on Sundays
|
||||
* `"20-00 SUN", "00-08 MON"` - 8 PM on Sundays to 8 AM on Mondays (spans from before midnight to after midnight).
|
||||
|
||||
### Setting worker schedules in the configuration file
|
||||
### Setting Worker Schedules in the Configuration File
|
||||
|
||||
Set a schedule for a worker using configuration file options. The options are:
|
||||
|
||||
@ -649,7 +649,7 @@ For example, set a worker's schedule from 5 PM to 8 PM on Sunday through Tuesday
|
||||
|
||||
agent.uptime: ["17-20 SUN-TUE", "13-22 WED"]
|
||||
|
||||
### Overriding worker schedules using runtime properties
|
||||
### Overriding Worker Schedules Using Runtime Properties
|
||||
|
||||
Runtime properties override the command line uptime / downtime properties. The runtime properties are:
|
||||
|
||||
@ -671,7 +671,7 @@ For example, to force a worker on for 24 hours:
|
||||
|
||||
curl --user <key>:<secret> --header "Content-Type: application/json" --data '{"worker":"<worker_id>","runtime_properties":[{"key": "force", "value": "on", "expiry": 86400}]}' http://<api-server-hostname-or-ip>:8008/workers.set_runtime_properties
|
||||
|
||||
### Overriding worker schedules using queue tags
|
||||
### Overriding Worker Schedules Using Queue Tags
|
||||
|
||||
Queue tags override command line and runtime properties. The queue tags are the following:
|
||||
|
||||
|
@ -12,7 +12,7 @@ Or, tag your questions on [stackoverflow](https://stackoverflow.com/questions/ta
|
||||
|
||||
You can always find us at [clearml@allegro.ai](mailto:clearml@allegro.ai?subject=ClearML).
|
||||
|
||||
## Allegro AI resources
|
||||
## Allegro AI Resources
|
||||
|
||||
Read the [Allegro Blogs](https://allegro.ai/blog/).
|
||||
|
||||
|
@ -14,7 +14,7 @@ This reference page is organized by configuration file section:
|
||||
An example configuration file is located [here](https://github.com/allegroai/clearml-agent/blob/master/docs/clearml.conf),
|
||||
in the **ClearML** GitHub repositories
|
||||
|
||||
## Editing your configuration file
|
||||
## Editing Your Configuration File
|
||||
|
||||
To add, change, or delete options, edit your configuration file.
|
||||
|
||||
@ -29,7 +29,7 @@ To add, change, or delete options, edit your configuration file.
|
||||
1. In the required section (sections listed on this page), add, modify, or remove required options.
|
||||
1. Save configuration file.
|
||||
|
||||
## Environment variables
|
||||
## Environment Variables
|
||||
ClearML's configuration file uses [HOCON](https://github.com/lightbend/config/blob/main/HOCON.md) configuration format,
|
||||
which supports environment variable reference.
|
||||
|
||||
@ -49,7 +49,7 @@ See [Note on Windows](https://github.com/lightbend/config/blob/main/HOCON.md#not
|
||||
for information about using environment variables with Windows in the configuration file.
|
||||
|
||||
|
||||
## Configuration file sections
|
||||
## Configuration File Sections
|
||||
|
||||
### agent section
|
||||
|
||||
|
@ -35,7 +35,7 @@ in the [Security](clearml_server_security.md) page.
|
||||
The minimum recommended amount of RAM is 8 GB. For example, a t3.large or t3a.large EC2 instance type would accommodate the recommended RAM size.
|
||||
|
||||
|
||||
### AWS community AMIs
|
||||
### AWS Community AMIs
|
||||
|
||||
**To launch a ClearML Server AWS community AMI:**
|
||||
|
||||
@ -106,7 +106,7 @@ Once deployed, **ClearML Server** exposes the following services:
|
||||
If needed, modify the default login behavior to match workflow policy, see [Configuring Web Login Authentication](clearml_server_config.md#web-login-authentication)
|
||||
on the "Configuring Your Own ClearML Server" page.
|
||||
|
||||
## Storage configuration
|
||||
## Storage Configuration
|
||||
|
||||
The pre-built **ClearML Server** storage configuration is the following:
|
||||
|
||||
@ -115,7 +115,7 @@ The pre-built **ClearML Server** storage configuration is the following:
|
||||
* File Server: `/mnt/fileserver/`
|
||||
|
||||
|
||||
## Backing up and restoring data and configuration
|
||||
## Backing Up and Restoring Data and Configuration
|
||||
|
||||
:::note
|
||||
If data is being moved between a **Trains Server** and a **ClearML Server** installation, make sure to use the correct paths
|
||||
@ -147,13 +147,13 @@ sudo tar czvf ~/clearml_backup_config.tgz -C /opt/clearml/config .
|
||||
```
|
||||
|
||||
|
||||
## ClearML Server AWS community AMIs
|
||||
## ClearML Server AWS Community AMIs
|
||||
|
||||
The following section contains a list of AMI Image IDs per region for the latest **ClearML Server** version.
|
||||
|
||||
|
||||
|
||||
### Latest version
|
||||
### Latest Version
|
||||
|
||||
#### v1.1.1
|
||||
|
||||
|
@ -20,11 +20,11 @@ For all configuration options, see the [ClearML Configuration Reference](../conf
|
||||
We recommend using the latest version of **ClearML Server**.
|
||||
:::
|
||||
|
||||
## ClearML Server deployment configuration
|
||||
## ClearML Server Deployment Configuration
|
||||
|
||||
**ClearML Server** supports two deployment configurations: single IP (domain) and sub-domains.
|
||||
|
||||
### Single IP (domain) configuration
|
||||
### Single IP (Domain) Configuration
|
||||
|
||||
Single IP (domain) with the following open ports:
|
||||
|
||||
@ -32,7 +32,7 @@ Single IP (domain) with the following open ports:
|
||||
* API service on port `8008`
|
||||
* File storage service on port `8081`
|
||||
|
||||
### Sub-domain configuration
|
||||
### Sub-domain Configuration
|
||||
|
||||
Sub-domain configuration with default http/s ports (`80` or `443`):
|
||||
|
||||
@ -60,7 +60,7 @@ Accessing the **ClearML Web UI** with `app.clearml.mydomain.com` will automatica
|
||||
|
||||
**ClearML Server** features can be configured using either configuration files or environment variables.
|
||||
|
||||
### Configuration files
|
||||
### Configuration Files
|
||||
|
||||
The **ClearML Server** uses the following configuration files:
|
||||
|
||||
@ -88,12 +88,12 @@ tasks {
|
||||
:::
|
||||
|
||||
|
||||
### Environment variables
|
||||
### Environment Variables
|
||||
|
||||
The **ClearML Server** supports several fixed environment variables that affect its behavior,
|
||||
as well as dynamic environment variable that can be used to override any configuration file setting.
|
||||
|
||||
#### Fixed environment variables
|
||||
#### Fixed Environment Variables
|
||||
|
||||
General
|
||||
|
||||
@ -109,7 +109,7 @@ Database service overrides:
|
||||
* `CLEARML_REDIS_SERVICE_PORT` allows overriding the port for the Redis service
|
||||
|
||||
|
||||
#### Dynamic environment variables
|
||||
#### Dynamic Environment Variables
|
||||
|
||||
Dynamic environment variables can be used to override any configuration setting that appears in the configuration files.
|
||||
|
||||
@ -144,11 +144,11 @@ the default secret for the system's apiserver component can be overridden by set
|
||||
dynamic environment variable's key to lower-case before overriding configuration values with the environment variable value.
|
||||
:::
|
||||
|
||||
## Configuration procedures
|
||||
## Configuration Procedures
|
||||
|
||||
|
||||
|
||||
### Sub-domains and load balancers
|
||||
### Sub-domains and Load Balancers
|
||||
|
||||
To illustrate this configuration, we provide the following example based on AWS load balancing:
|
||||
|
||||
@ -189,7 +189,7 @@ To illustrate this configuration, we provide the following example based on AWS
|
||||
|
||||
|
||||
|
||||
### Opening Elasticsearch, MongoDB, and Redis for external access
|
||||
### Opening Elasticsearch, MongoDB, and Redis for External Access
|
||||
|
||||
For improved security, the ports for **ClearML Server** Elasticsearch, MongoDB, and Redis servers are not exposed by default;
|
||||
they are only open internally in the docker network. If external access is needed, open these ports (but make sure to
|
||||
@ -267,7 +267,7 @@ Without web login authentication, **ClearML Server** does not restrict access (b
|
||||
|
||||
1. Restart **ClearML Server**.
|
||||
|
||||
### Using hashed passwords
|
||||
### Using Hashed Passwords
|
||||
You can also use hashed passwords instead of plain-text passwords. To do that:
|
||||
- Set `pass_hashed: true`
|
||||
- Use a base64-encoded hashed password in the `password` field instead of a plain-text password. Assuming Jane's plain-text password is `123456`, use the following bash command to generate the base64-encoded hashed password:
|
||||
|
@ -35,7 +35,7 @@ and **ClearML Server** needs to be installed.
|
||||
* Minimum free disk space of at least 30% plus two times the size of the data.
|
||||
* Python version >=2.7 or >=3.6, and Python accessible from the command-line as `python`
|
||||
|
||||
### Migrating the data
|
||||
### Migrating the Data
|
||||
|
||||
**To migrate the data:**
|
||||
|
||||
@ -125,13 +125,13 @@ and **ClearML Server** needs to be installed.
|
||||
|
||||
kubectl get jobs -n upgrade-elastic
|
||||
|
||||
### Finishing up
|
||||
### Finishing Up
|
||||
|
||||
To finish up:
|
||||
1. Verify the data migration
|
||||
1. Conclude the upgrade.
|
||||
|
||||
#### Step 1. Verifying the data migration
|
||||
#### Step 1. Verifying the Data Migration
|
||||
|
||||
Upon successful completion, the migration script renames the original **Trains Server** directory, which contains the now
|
||||
migrated data, and prints a completion message:
|
||||
@ -150,7 +150,7 @@ For help in resolving migration issues, check the **allegro-clearml** [Slack Cha
|
||||
[GitHub Issues](https://github.com/allegroai/clearml-server/issues), and the **ClearML Server** sections of the [FAQ](../faq.md).
|
||||
:::
|
||||
|
||||
#### Step 2. Completing the installation
|
||||
#### Step 2. Completing the Installation
|
||||
|
||||
After verifying the data migration completed successfully, conclude the **ClearML Server** installation process.
|
||||
|
||||
@ -205,7 +205,7 @@ For backwards compatibility, the environment variables ``TRAINS_HOST_IP``, ``TRA
|
||||
|
||||
If issues arise during the upgrade, see the FAQ page, [How do I fix Docker upgrade errors?](../faq#common-docker-upgrade-errors).
|
||||
|
||||
##### Other deployment formats
|
||||
##### Other Deployment Formats
|
||||
|
||||
To conclude the upgrade for deployment formats other than Linux, follow their upgrade instructions:
|
||||
|
||||
|
@ -20,7 +20,7 @@ for Firefox, go to Developer Tools > Storage > Cookies, and for Chrome, go to De
|
||||
and delete all cookies under the **ClearML Server** URL.
|
||||
:::
|
||||
|
||||
## Default ClearML Server service ports
|
||||
## Default ClearML Server Service Ports
|
||||
|
||||
After deploying **ClearML Server**, the services expose the following node ports:
|
||||
|
||||
@ -28,7 +28,7 @@ After deploying **ClearML Server**, the services expose the following node ports
|
||||
* API server on `8008`
|
||||
* File Server on `8081`
|
||||
|
||||
## Default ClearML Server storage paths
|
||||
## Default ClearML Server Storage Paths
|
||||
|
||||
The persistent storage configuration:
|
||||
|
||||
@ -85,7 +85,7 @@ The minimum requirements for **ClearML Server** are:
|
||||
docker-compose -f /opt/clearml/docker-compose.yml up -d
|
||||
|
||||
|
||||
## Backing up and restoring data and configuration
|
||||
## Backing Up and Restoring Data and Configuration
|
||||
|
||||
The commands in this section are an example of how to back up and restore data and configuration .
|
||||
|
||||
@ -112,11 +112,11 @@ If the data and the configuration need to be restored:
|
||||
|
||||
The following section contains a list of Custom Image URLs (exported in different formats) for each released **ClearML Server** version.
|
||||
|
||||
### Latest version - v1.0.2
|
||||
### Latest Version - v1.0.2
|
||||
|
||||
- [https://storage.googleapis.com/allegro-files/clearml-server/clearml-server.tar.gz](https://storage.googleapis.com/allegro-files/clearml-server/clearml-server.tar.gz)
|
||||
|
||||
### All release versions
|
||||
### All Release Versions
|
||||
|
||||
- v1.0.2 - [https://storage.googleapis.com/allegro-files/clearml-server/clearml-server-1-0-2.tar.gz](https://storage.googleapis.com/allegro-files/clearml-server/clearml-server-1-0-2.tar.gz)
|
||||
- v1.0.1 - [https://storage.googleapis.com/allegro-files/clearml-server/clearml-server-1-0-1.tar.gz](https://storage.googleapis.com/allegro-files/clearml-server/clearml-server-1-0-1.tar.gz)
|
||||
|
@ -39,7 +39,7 @@ instructions in the [Security](clearml_server_security.md) page.
|
||||
:::
|
||||
|
||||
|
||||
### Step 1: Modify Elasticsearch default values in the Docker configuration file
|
||||
### Step 1: Modify Elasticsearch Default Values in the Docker Configuration File
|
||||
|
||||
Before deploying **ClearML Server** in a Kubernetes cluster, modify several Elasticsearch settings in the Docker configuration.
|
||||
For more information, see [Install Elasticsearch with Docker](https://www.elastic.co/guide/en/elasticsearch/reference/master/docker.html#_notes_for_production_use_and_defaults)
|
||||
@ -80,7 +80,7 @@ in the Elasticsearch documentation and [Daemon configuration file](https://docs.
|
||||
|
||||
sudo service docker restart
|
||||
|
||||
### Step 2. Deploy ClearML Server in the Kubernetes using Helm
|
||||
### Step 2. Deploy ClearML Server in the Kubernetes Using Helm
|
||||
|
||||
After modifying several Elasticsearch settings in the Docker configuration (see Step 1 above), deploy **ClearML Server**.
|
||||
|
||||
|
@ -135,7 +135,7 @@ instructions in the [Security](clearml_server_security.md) page.
|
||||
|
||||
The server is now running on [http://localhost:8080](http://localhost:8080).
|
||||
|
||||
## Port mapping
|
||||
## Port Mapping
|
||||
|
||||
After deploying **ClearML Server**, the services expose the following ports:
|
||||
|
||||
@ -154,7 +154,7 @@ After deploying **ClearML Server**, the services expose the following ports:
|
||||
|
||||
|
||||
|
||||
## Backing up and restoring data and configuration
|
||||
## Backing Up and Restoring Data and Configuration
|
||||
|
||||
The commands in this section are an example of how to back up and to restore data and configuration .
|
||||
|
||||
|
@ -60,7 +60,7 @@ By default, **ClearML Server** launches with unrestricted access. To restrict **
|
||||
|
||||
The server is now running on [http://localhost:8080](http://localhost:8080).
|
||||
|
||||
## Port mapping
|
||||
## Port Mapping
|
||||
|
||||
After deploying **ClearML Server**, the services expose the following node ports:
|
||||
|
||||
|
@ -13,7 +13,7 @@ For upgrade purposes, the terms **Trains Server** and **ClearML Server** are int
|
||||
The sections below contain the steps to upgrade **ClearML Server** on the [same AWS instance](#upgrading-on-the-same-aws-instance), and
|
||||
to upgrade and migrate to a [new AWS instance](#upgrading-and-migrating-to-a-new-aws-instance).
|
||||
|
||||
### Upgrading on the same AWS instance
|
||||
### Upgrading on the Same AWS Instance
|
||||
|
||||
This section contains the steps to upgrade **ClearML Server** on the same AWS instance.
|
||||
|
||||
@ -48,7 +48,7 @@ Some legacy **Trains Server** AMIs provided an auto-upgrade on restart capabilit
|
||||
docker-compose -f /opt/clearml/docker-compose.yml pull
|
||||
docker-compose -f docker-compose.yml up -d
|
||||
|
||||
### Upgrading and migrating to a new AWS instance
|
||||
### Upgrading and Migrating to a New AWS Instance
|
||||
|
||||
This section contains the steps to upgrade **ClearML Server** on the new AWS instance.
|
||||
|
||||
|
@ -25,7 +25,7 @@ models, and dataviews, can be viewed in the project's [experiments table](../web
|
||||
|
||||
## Usage
|
||||
|
||||
### Creating sub-projects
|
||||
### Creating Sub-projects
|
||||
|
||||
When [initializing a task](task.md#task-creation), its project needs to be specified. If the project entered does not exist, it will be created.
|
||||
Projects can contain sub-projects, just like folders can contain sub-folders. Input into the `project_name`
|
||||
@ -44,7 +44,7 @@ Nesting projects works on multiple levels. For example: `project_name=main_proje
|
||||
|
||||
Projects can also be created using the [`projects.create`](../references/api/endpoints.md#post-projectscreate) REST API call.
|
||||
|
||||
### View all projects in system
|
||||
### View All Projects in System
|
||||
|
||||
To view all projects in the system, use the `Task` class method `get_projects`:
|
||||
|
||||
@ -54,7 +54,7 @@ project_list = Task.get_projects()
|
||||
|
||||
This returns a list of project sorted by last update time.
|
||||
|
||||
### More actions
|
||||
### More Actions
|
||||
|
||||
For additional ways to work with projects, use the REST API `projects` resource. Some of the available actions include:
|
||||
* [`projects.create`](../references/api/endpoints.md#post-projectscreate) and [`projects.delete`](../references/api/endpoints.md#post-projectsdelete) - create and delete projects
|
||||
|
@ -27,7 +27,7 @@ It's possible to copy ([clone](../webapp/webapp_exp_reproducing.md)) a task mult
|
||||
|
||||

|
||||
|
||||
## Task sections
|
||||
## Task Sections
|
||||
|
||||
The sections of **ClearML Task** are made up of the information that a task captures and stores, which consists of code
|
||||
execution details and execution outputs. This information is used for tracking
|
||||
@ -48,7 +48,7 @@ The captured [execution output](../webapp/webapp_exp_track_visual.md#experiment-
|
||||
|
||||
To view a more in depth description of each task section, see [Tracking Experiments and Visualizing Results](../webapp/webapp_exp_track_visual.md).
|
||||
|
||||
## Task types
|
||||
## Task Types
|
||||
|
||||
Tasks have a *type* attribute, which denotes their purpose (Training / Testing / Data processing). This helps to further
|
||||
organize projects and ensure tasks are easy to [search and find](#querying--searching-tasks). The default task type is *training*.
|
||||
@ -64,7 +64,7 @@ Available task types are:
|
||||
- *data_processing*, *qc*
|
||||
- *custom*
|
||||
|
||||
## Task lifecycle
|
||||
## Task Lifecycle
|
||||
|
||||
ClearML Tasks are created in one of the following methods:
|
||||
* Manually running code that is instrumented with the ClearML SDK and invokes `Task.init()`.
|
||||
@ -102,7 +102,7 @@ The above diagram demonstrates how a previously run task can be used as a baseli
|
||||
1. The new task is enqueued for execution.
|
||||
1. A `clearml-agent` servicing the queue pulls the new task and executes it (where ClearML again logs all the execution outputs).
|
||||
|
||||
## Task states
|
||||
## Task States
|
||||
|
||||
The state of a Task represents its stage in the Task lifecycle. It indicates whether the Task is read-write (editable) or
|
||||
read-only. For each state, a state transition indicates which actions can be performed on an experiment, and the new state
|
||||
|
@ -5,6 +5,7 @@ title: First Steps
|
||||
|
||||
## Install ClearML
|
||||
|
||||
|
||||
First, [sign up for free](https://app.community.clear.ml)
|
||||
|
||||
Install the clearml python package:
|
||||
@ -18,7 +19,7 @@ clearml-init
|
||||
```
|
||||
|
||||
|
||||
## Auto-log experiment
|
||||
## Auto-log Experiment
|
||||
|
||||
In ClearML, experiments are organized as [Tasks](../../fundamentals/task).
|
||||
|
||||
|
@ -46,7 +46,7 @@ Artifacts can be stored anywhere, either on the ClearML server, or any object st
|
||||
see all [storage capabilities](../../integrations/storage).
|
||||
|
||||
|
||||
### Adding artifacts
|
||||
### Adding Artifacts
|
||||
|
||||
Uploading a local file containing the preprocessed results of the data:
|
||||
```python
|
||||
@ -154,7 +154,7 @@ Any page is sharable by copying the URL from the address bar, allowing you to bo
|
||||
It's also possible to tag Tasks for visibility and filtering allowing you to add more information on the execution of the experiment.
|
||||
Later you can search based on task name and tag in the search bar, and filter experiments based on their tags, parameters, status and more.
|
||||
|
||||
## What's next?
|
||||
## What's Next?
|
||||
|
||||
This covers the Basics of ClearML! Running through this guide we've learned how to log Parameters, Artifacts and Metrics!
|
||||
|
||||
|
@ -11,7 +11,7 @@ while ClearML ensures your work is reproducible and scalable.
|
||||
|
||||
<img src="https://github.com/allegroai/clearml-docs/blob/main/docs/img/clearml_architecture.png?raw=true" width="100%" alt="Architecture diagram"/>
|
||||
|
||||
## What can you do with ClearML?
|
||||
## What Can You Do with ClearML?
|
||||
|
||||
- Track and upload metrics and models with only 2 lines of code
|
||||
- Create a bot that sends you a slack message whenever you model improves in accuracy
|
||||
|
@ -28,7 +28,7 @@ Once we have a Task in ClearML, we can clone and edit its definition in the UI.
|
||||
- Create data monitoring & scheduling and launch inference jobs to test performance on any new coming dataset.
|
||||
- Once there are two or more experiments that run after another, group them together into a [pipeline](../../fundamentals/pipelines.md)
|
||||
|
||||
## Manage your data
|
||||
## Manage Your Data
|
||||
Use [ClearML Data](../../clearml_data.md) to version your data, then link it to running experiments for easy reproduction.
|
||||
Make datasets machine agnostic (i.e. store original dataset in a shared storage location, e.g. shared-folder/S3/Gs/Azure)
|
||||
ClearML Data supports efficient Dataset storage and caching, differentiable & compressed
|
||||
|
@ -123,7 +123,7 @@ from clearml import Task
|
||||
executed_task = Task.get_task(task_id='aabbcc')
|
||||
# get a summary of the min/max/last value of all reported scalars
|
||||
min_max_vlues = executed_task.get_last_scalar_metrics()
|
||||
# get detialed graphs of all scalars
|
||||
# get detailed graphs of all scalars
|
||||
full_scalars = executed_task.get_reported_scalars()
|
||||
```
|
||||
|
||||
|
@ -13,7 +13,7 @@ on a remote or local machine, from the remote repository and from a local script
|
||||
|
||||
- [allegroai/events](https://github.com/allegroai/events) repository cloned (for local script execution)
|
||||
|
||||
### Executing code from a remote repository
|
||||
### Executing Code from a Remote Repository
|
||||
|
||||
``` bash
|
||||
clearml-task --project keras_examples --name remote_test --repo https://github.com/allegroai/events.git --script /webinar-0620/keras_mnist.py --args batch_size=64 epochs=1 --queue default
|
||||
@ -57,7 +57,7 @@ or add the **`--packages '<package_name>`** flag to the command.
|
||||
<br />
|
||||
|
||||
|
||||
### Executing a local script
|
||||
### Executing a Local Script
|
||||
Using `clearml-task` to execute a local script is very similar to using it with a remote repo.
|
||||
|
||||
For this example, we will be using a local version of this [script](https://github.com/allegroai/events/blob/master/webinar-0620/keras_mnist.py).
|
||||
|
@ -10,7 +10,7 @@ the needed files.
|
||||
1. Open terminal and change directory to the cloned repository's examples folder
|
||||
`cd clearml/examples/reporting`
|
||||
|
||||
## Creating initial dataset
|
||||
## Creating Initial Dataset
|
||||
|
||||
1. To create the dataset, run this code:
|
||||
|
||||
@ -68,7 +68,7 @@ The command also finalizes the dataset, making it immutable and ready to be cons
|
||||
Dataset closed and finalized
|
||||
```
|
||||
|
||||
## Listing Dataset content
|
||||
## Listing Dataset Content
|
||||
|
||||
To see that all the files were added to the created dataset, use `clearml-data list` and enter the ID of the dataset
|
||||
that was just closed.
|
||||
|
@ -25,7 +25,7 @@ Once these are logged, they can be visualized in the **ClearML Web UI**.
|
||||
If you are not already using **ClearML**, see [Getting Started](/getting_started/ds/best_practices.md).
|
||||
:::
|
||||
|
||||
## Adding ClearML to code
|
||||
## Adding ClearML to Code
|
||||
|
||||
Add two lines of code:
|
||||
```python
|
||||
|
@ -40,7 +40,7 @@ Text printed to the console for training progress, as well as all other console
|
||||
|
||||

|
||||
|
||||
## Configuration objects
|
||||
## Configuration Objects
|
||||
|
||||
The configuration appears in **CONFIGURATIONS** **>** **CONFIGURATION OBJECTS** **>** **General**.
|
||||
|
||||
|
@ -21,7 +21,7 @@ The scatter plots appear in the **ClearML Web UI**, in **RESULTS** **>** **PLOTS
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
The images appear in **RESULTS** **>** **DEBUG SAMPLES**. Each debug sample image is associated with a metric.
|
||||
|
||||
|
@ -17,7 +17,7 @@ The scatter plots appear in the **ClearML Web UI**, in **RESULTS** **>** **PLOTS
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
The images appear in **RESULTS** **>** **DEBUG SAMPLES**. Each debug sample image is associated with a metric.
|
||||
|
||||
|
@ -29,7 +29,7 @@ Integrate **ClearML** with the following steps:
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
```
|
||||
|
||||
### ClearMLLogger parameters
|
||||
### ClearMLLogger Parameters
|
||||
|
||||
The following are the `ClearMLLogger` method parameters:
|
||||
|
||||
@ -52,7 +52,7 @@ The following are the `ClearMLLogger` method parameters:
|
||||
|
||||
## Logging
|
||||
|
||||
### Ignite engine output and / or metrics
|
||||
### Ignite Engine Output and / or Metrics
|
||||
|
||||
To log scalars, Ignite engine's output and / or metrics, use the `OutputHandler`.
|
||||
|
||||
@ -91,7 +91,7 @@ clearml_logger.attach(evaluator,
|
||||
event_name=Events.EPOCH_COMPLETED)
|
||||
```
|
||||
|
||||
### Optimizer parameters
|
||||
### Optimizer Parameters
|
||||
|
||||
To log optimizer parameters, use `OptimizerParamsHandler`:
|
||||
```python
|
||||
@ -101,7 +101,7 @@ clearml_logger.attach(trainer,
|
||||
event_name=Events.ITERATION_STARTED)
|
||||
```
|
||||
|
||||
### Model weights
|
||||
### Model Weights
|
||||
|
||||
To log model weights as scalars, use `WeightsScalarHandler`:
|
||||
|
||||
@ -122,7 +122,7 @@ clearml_logger.attach(trainer,
|
||||
```
|
||||
|
||||
|
||||
## Model snapshots
|
||||
## Model Snapshots
|
||||
|
||||
To save input snapshots as **ClearML** artifacts, use `ClearMLSaver`:
|
||||
|
||||
@ -137,7 +137,7 @@ handler = Checkpoint(to_save, ClearMLSaver(clearml_logger), n_saved=1,
|
||||
validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler)
|
||||
```
|
||||
|
||||
## Visualizing experiment results
|
||||
## Visualizing Experiment Results
|
||||
|
||||
When the code with an ignite `ClearMLLogger` object and attached [handlers](https://github.com/pytorch/ignite/blob/master/ignite/contrib/handlers/trains_logger.py)
|
||||
runs, the experiment results can be visualized in the **ClearML Web UI**.
|
||||
@ -154,7 +154,7 @@ View the scalars, including training and validation metrics, in the experiment's
|
||||

|
||||

|
||||
|
||||
### Model snapshots
|
||||
### Model Snapshots
|
||||
|
||||
To save model snapshots, use `ClearMLServer`.
|
||||
|
||||
|
@ -10,17 +10,17 @@ The accuracy, learning rate, and training loss scalars are automatically logged,
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
The audio samples and spectrogram plots are automatically logged and appear in **RESULTS** **>** **DEBUG SAMPLES**.
|
||||
|
||||
### Audio samples
|
||||
### Audio Samples
|
||||
|
||||

|
||||
|
||||
By doubling clicking a thumbnail, you can play an audio sample.
|
||||
|
||||
### Spectrogram visualizations
|
||||
### Spectrogram Visualizations
|
||||
|
||||

|
||||
|
||||
|
@ -11,17 +11,17 @@ demonstrates integrating **ClearML** into a Jupyter Notebook which uses PyTorch
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
**ClearML** automatically logs the audio samples which the example reports by calling TensorBoard methods, and the spectrogram visualizations reported by calling Matplotlib methods. They appear in **RESULTS** **>** **DEBUG SAMPLES**.
|
||||
|
||||
### Audio samples
|
||||
### Audio Samples
|
||||
|
||||
You can play the audio samples by double clicking the audio thumbnail.
|
||||
|
||||

|
||||
|
||||
### Spectrogram visualizations
|
||||
### Spectrogram Visualizations
|
||||
|
||||

|
||||

|
||||
|
@ -77,7 +77,7 @@ All console output from `Hyper-Parameter Optimization` appears in **RESULTS** ta
|
||||
|
||||

|
||||
|
||||
## Experiments comparison
|
||||
## Experiments Comparison
|
||||
|
||||
**ClearML** automatically logs each job, meaning each experiment that executes with a set of hyperparameters, separately. Each appears as an individual experiment in the **ClearML Web UI**, where the Task name is `image_classification_CIFAR10` and the hyperparameters appended.
|
||||
|
||||
@ -93,31 +93,31 @@ Use the **ClearML Web UI** [experiment comparison](../../../../../webapp/webapp_
|
||||
* Plots
|
||||
* Debug images
|
||||
|
||||
### Side by side hyperparameter value comparison
|
||||
### Side by Side Hyperparameter Value Comparison
|
||||
|
||||
In the experiment comparison window, **HYPER PARAMETERS** tab, select **Values** in the list (the right of **+ Add Experiment**), and hyperparameter differences appear with a different background color.
|
||||
|
||||

|
||||
|
||||
### Metric comparison by hyperparameter
|
||||
### Metric Comparison by Hyperparameter
|
||||
|
||||
Select **Parallel Coordinates** in the list, click a **Performance Metric**, and then select the checkboxes of the hyperparameters.
|
||||
|
||||

|
||||
|
||||
### Scalar values comparison
|
||||
### Scalar Values Comparison
|
||||
|
||||
In the **SCALARS** tab, select **Last Values**, **Min Values**, or **Max Values**. Value differences appear with a different background color.
|
||||
|
||||

|
||||
|
||||
### Scalar series comparison
|
||||
### Scalar Series Comparison
|
||||
|
||||
Select **Graph** and the scalar series for the jobs appears, where each scalar plot shows the series for all jobs.
|
||||
|
||||

|
||||
|
||||
### Debug samples comparison
|
||||
### Debug Samples Comparison
|
||||
|
||||
In the **DEBUG SAMPLES** tab, debug images appear.
|
||||
|
||||
|
@ -17,7 +17,7 @@ The accuracy, accuracy per class, and training loss scalars are automatically lo
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
The image samples are automatically logged and appear in **RESULTS** **>** **DEBUG SAMPLES**.
|
||||
|
||||
|
@ -22,13 +22,13 @@ In this pipeline example, the data preprocessing Task and training Task are each
|
||||
The data download Task is not a step in the pipeline, see [download_and_split](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/notebooks/table/download_and_split.ipynb).
|
||||
:::
|
||||
|
||||
## Pipeline controller and steps
|
||||
## Pipeline Controller and Steps
|
||||
|
||||
In this example, a pipeline controller object is created.
|
||||
|
||||
pipe = PipelineController(default_execution_queue='dan_queue', add_pipeline_tags=True)
|
||||
|
||||
### Preprocessing step
|
||||
### Preprocessing Step
|
||||
|
||||
Two preprocessing nodes are added to the pipeline. These steps will run concurrently.
|
||||
|
||||
@ -89,7 +89,7 @@ two sets of data are created in the pipeline.
|
||||
</details>
|
||||
|
||||
|
||||
### Training step
|
||||
### Training Step
|
||||
|
||||
Each training node depends upon the completion of one preprocessing node. The parameter `parents` is a list of step names indicating all steps that must complete before the new step starts. In this case, `preprocessing_1` must complete before `train_1` begins, and `preprocessing_2` must complete before `train_2` begins.
|
||||
|
||||
@ -133,7 +133,7 @@ The ID of a Task whose artifact contains a set of preprocessed data for training
|
||||
</details>
|
||||
|
||||
|
||||
### Best model step
|
||||
### Best Model Step
|
||||
|
||||
The best model step depends upon both training nodes completing and takes the two training node Task IDs to override.
|
||||
|
||||
@ -168,7 +168,7 @@ The IDs of the training Tasks from the steps named `train_1` and `train_2` are p
|
||||
</details>
|
||||
|
||||
|
||||
### Pipeline start, wait, and cleanup
|
||||
### Pipeline Start, Wait, and Cleanup
|
||||
|
||||
Once all steps are added to the pipeline, start it. Wait for it to complete. Finally, cleanup the pipeline processes.
|
||||
|
||||
@ -196,7 +196,7 @@ Once all steps are added to the pipeline, start it. Wait for it to complete. Fin
|
||||
</details>
|
||||
|
||||
|
||||
## Running the pipeline
|
||||
## Running the Pipeline
|
||||
|
||||
**To run the pipeline:**
|
||||
|
||||
|
@ -21,7 +21,7 @@ These scalars, along with the resource utilization plots, which are titled **:mo
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
**ClearML** automatically tracks images and text output to TensorFlow. They appear in **RESULTS** **>** **DEBUG SAMPLES**.
|
||||
|
||||
|
@ -40,7 +40,7 @@ When the script runs, it logs:
|
||||
|
||||

|
||||
|
||||
## Summary of hyperparameter optimization
|
||||
## Summary of Hyperparameter Optimization
|
||||
|
||||
**ClearML** automatically logs the parameters of each experiment run in the hyperparameter search. They appear in tabular
|
||||
form in **RESULTS** **>** **PLOTS**.
|
||||
@ -61,7 +61,7 @@ The model configuration is stored with the model.
|
||||
|
||||

|
||||
|
||||
## Configuration objects
|
||||
## Configuration Objects
|
||||
|
||||
### Hyperparameters
|
||||
|
||||
|
@ -29,7 +29,7 @@ The `tf.summary.histogram` output appears in **RESULTS** **>** **PLOTS**.
|
||||
|
||||

|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
**ClearML** automatically tracks images and text output to TensorFlow. They appear in **RESULTS** **>** **DEBUG SAMPLES**.
|
||||
|
||||
|
@ -18,7 +18,7 @@ The **ClearML PyCharm plugin** enables syncing a local execution configuration t
|
||||
|
||||

|
||||
|
||||
## Optional: ClearML configuration parameters
|
||||
## Optional: ClearML Configuration Parameters
|
||||
|
||||
:::warning
|
||||
If you set ClearML configuration parameters (ClearML Server and ClearML credentials) in the plugin, they will override
|
||||
|
@ -53,7 +53,7 @@ Interactive session config:
|
||||
}
|
||||
```
|
||||
|
||||
### Step 2: Launch interactive session
|
||||
### Step 2: Launch Interactive Session
|
||||
|
||||
When the CLI asks whether to `Launch interactive session [Y]/n?`, press 'Y' or 'Enter'.
|
||||
|
||||
@ -72,7 +72,7 @@ Setup process details: https://app.community.clear.ml/projects/60893b87b0b642679
|
||||
Waiting for environment setup to complete [usually about 20-30 seconds]
|
||||
```
|
||||
|
||||
### Step 3: Connect to remote notebook
|
||||
### Step 3: Connect to Remote Notebook
|
||||
|
||||
Then the CLI will output a link to the ready environment:
|
||||
|
||||
@ -87,7 +87,7 @@ Click on the JupyterLab link, which will open the remote session
|
||||
|
||||
Now, let's execute some code in the remote session!
|
||||
|
||||
### Step 4: Execute code
|
||||
### Step 4: Execute Code
|
||||
|
||||
1. Open up a new Notebook.
|
||||
|
||||
@ -103,7 +103,7 @@ Now, let's execute some code in the remote session!
|
||||
Look in the script, and notice that it makes use of ClearML, Keras, and TensorFlow, but we don't need to install these
|
||||
packages in Jupyter, because we specified them in the `--packages` flag of `clearml-session`.
|
||||
|
||||
### Step 5: Shut down remote session
|
||||
### Step 5: Shut Down Remote Session
|
||||
|
||||
To shut down the remote session, which will free the `clearml-agent` and close the CLI, enter "Shutdown".
|
||||
|
||||
|
@ -7,7 +7,7 @@ example script demonstrates hyperparameter optimization, which is automated by u
|
||||
|
||||
<a class="tr_top_negative" name="strategy"></a>
|
||||
|
||||
## Set the search strategy for optimization
|
||||
## Set the Search Strategy for Optimization
|
||||
|
||||
A search strategy is required for the optimization, as well as a search strategy optimizer class to implement that strategy.
|
||||
|
||||
@ -57,7 +57,7 @@ the `RandomSearch` for the search strategy.
|
||||
'we will be using RandomSearch strategy instead')
|
||||
aSearchStrategy = RandomSearch
|
||||
|
||||
## Define a callback
|
||||
## Define a Callback
|
||||
|
||||
When the optimization starts, a callback is provided that returns the best performing set of hyperparameters. In the script,
|
||||
the `job_complete_callback` function returns the ID of `top_performance_job_id`.
|
||||
@ -73,7 +73,7 @@ the `job_complete_callback` function returns the ID of `top_performance_job_id`.
|
||||
if job_id == top_performance_job_id:
|
||||
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
|
||||
|
||||
## Initialize the optimization Task
|
||||
## Initialize the Optimization Task
|
||||
|
||||
Initialize the Task, which will be stored in **ClearML Server** when the code runs. After the code runs at least once, it
|
||||
can be [reproduced](../../../webapp/webapp_exp_reproducing.md) and [tuned](../../../webapp/webapp_exp_tuning.md).
|
||||
@ -89,7 +89,7 @@ the project **Hyper-Parameter Optimization**, which can be seen in the **ClearML
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False)
|
||||
|
||||
## Set up the arguments
|
||||
## Set Up the Arguments
|
||||
|
||||
Create an arguments dictionary that contains the ID of the Task to optimize, and a Boolean indicating whether the
|
||||
optimizer will run as a service, see [Running as a service](#running-as-a-service).
|
||||
@ -112,7 +112,7 @@ to optimize a different experiment, see [tuning experiments](../../../webapp/web
|
||||
args['template_task_id'] = Task.get_task(
|
||||
project_name='examples', task_name='Keras HP optimization base').id
|
||||
|
||||
## Instantiate the optimizer object
|
||||
## Instantiate the Optimizer Object
|
||||
|
||||
Instantiate an [automation.optimization.HyperParameterOptimizer](../../../references/sdk/hpo_optimization_hyperparameteroptimizer.md)
|
||||
object, setting the optimization parameters, beginning with the ID of the experiment to optimize.
|
||||
@ -170,7 +170,7 @@ Specify the remaining parameters, including the time limit per Task (minutes), p
|
||||
|
||||
<a class="tr_top_negative" name="service"></a>
|
||||
|
||||
## Running as a service
|
||||
## Running as a Service
|
||||
|
||||
The optimization can run as a service, if the `run_as_service` argument is set to `true`. For more information about
|
||||
running as a service, see [ClearML Agent services container](../../../clearml_agent.md#services-mode)
|
||||
|
@ -37,7 +37,7 @@ controller Task has already run at least once and is in **ClearML Server**).
|
||||
|
||||
The sections below describe in more detail what happens in the controller Task and in each step Task.
|
||||
|
||||
## The pipeline controller
|
||||
## The Pipeline Controller
|
||||
|
||||
1. Create the pipeline controller object.
|
||||
|
||||
@ -98,7 +98,7 @@ The sections below describe in more detail what happens in the controller Task a
|
||||
pipe.stop()
|
||||
```
|
||||
|
||||
## Step 1 - Downloading the data
|
||||
## Step 1 - Downloading the Data
|
||||
|
||||
In the Step 1 Task ([step1_dataset_artifact.py](https://github.com/allegroai/clearml/blob/master/examples/pipeline/step1_dataset_artifact.py)):
|
||||
1. Clone base Task and enqueue it for execution
|
||||
@ -118,7 +118,7 @@ when the `add_step` method is called in the pipeline controller.
|
||||
task.upload_artifact('dataset', artifact_object=local_iris_pkl)
|
||||
```
|
||||
|
||||
## Step 2 - Processing the data
|
||||
## Step 2 - Processing the Data
|
||||
|
||||
In the Step 2 Task ([step2_data_processing.py](https://github.com/allegroai/clearml/blob/master/examples/pipeline/step2_data_processing.py)):
|
||||
1. Create a parameter dictionary and connect it to the Task.
|
||||
@ -158,7 +158,7 @@ In the Step 2 Task ([step2_data_processing.py](https://github.com/allegroai/clea
|
||||
task.upload_artifact('y_test', y_test)
|
||||
```
|
||||
|
||||
## Step 3 - Training the network
|
||||
## Step 3 - Training the Network
|
||||
|
||||
In the Step 3 Task ([step3_train_model.py](https://github.com/allegroai/clearml/blob/master/examples/pipeline/step3_train_model.py)):
|
||||
1. Create a parameter dictionary and connect it to the Task.
|
||||
@ -191,7 +191,7 @@ In the Step 3 Task ([step3_train_model.py](https://github.com/allegroai/clearml/
|
||||
|
||||
1. Train the network and log plots, along with **ClearML** automatic logging.
|
||||
|
||||
## Running the pipeline
|
||||
## Running the Pipeline
|
||||
|
||||
**To run the pipeline:**
|
||||
|
||||
|
@ -9,7 +9,7 @@ When the script runs, it creates an experiment named `3D plot reporting`, which
|
||||
|
||||
**ClearML** reports these plots in the **ClearML Web UI** **>** experiment page **>** **RESULTS** tab **>** **PLOTS** sub-tab.
|
||||
|
||||
## Surface plot
|
||||
## Surface Plot
|
||||
|
||||
To plot a series as a surface plot, use the [Logger.report_surface](../../references/sdk/logger.md#report_surface)
|
||||
method.
|
||||
@ -30,7 +30,7 @@ Visualize the reported surface plot in **RESULTS** **>** **PLOTS**.
|
||||
|
||||

|
||||
|
||||
## 3D scatter plot
|
||||
## 3D Scatter Plot
|
||||
|
||||
To plot a series as a 3-dimensional scatter plot, use the [Logger.report_scatter3d](../../references/sdk/logger.md#report_scatter3d)
|
||||
method.
|
||||
|
@ -31,7 +31,7 @@ When the script runs, it creates an experiment named `artifacts example`, which
|
||||
|
||||

|
||||
|
||||
## Dynamically tracked artifacts
|
||||
## Dynamically Tracked Artifacts
|
||||
|
||||
Currently, **ClearML** supports uploading and dynamically tracking Pandas DataFrames. Use the [Task.register_artifact](../../references/sdk/task.md#register_artifact)
|
||||
method. If the Pandas DataFrame changes, **ClearML** uploads the changes. The updated artifact is associated with the experiment.
|
||||
@ -59,7 +59,7 @@ method to retrieve it, we can see that **ClearML** tracked the change.
|
||||
# or access it from anywhere using the Task's get_registered_artifacts()
|
||||
Task.current_task().get_registered_artifacts()['train'].sample(frac=0.5, replace=True, random_state=1)
|
||||
|
||||
## Artifacts without tracking
|
||||
## Artifacts Without Tracking
|
||||
|
||||
**ClearML** supports several types of objects that can be uploaded and are not tracked. Use the [Task.upload_artifact](../../references/sdk/task.md#upload_artifact)
|
||||
method.
|
||||
@ -79,7 +79,7 @@ Artifacts without tracking include:
|
||||
# add and upload pandas.DataFrame (onetime snapshot of the object)
|
||||
task.upload_artifact('Pandas', artifact_object=df)
|
||||
|
||||
### Local files
|
||||
### Local Files
|
||||
|
||||
# add and upload local file artifact
|
||||
task.upload_artifact('local file', artifact_object=os.path.join('data_samples', 'dancing.jpg'))
|
||||
@ -89,12 +89,12 @@ Artifacts without tracking include:
|
||||
# add and upload dictionary stored as JSON)
|
||||
task.upload_artifact('dictionary', df.to_dict())
|
||||
|
||||
### Numpy objects
|
||||
### Numpy Objects
|
||||
|
||||
# add and upload Numpy Object (stored as .npz file)
|
||||
task.upload_artifact('Numpy Eye', np.eye(100, 100))
|
||||
|
||||
### Image files
|
||||
### Image Files
|
||||
|
||||
# add and upload Image (stored as .png file)
|
||||
im = Image.open(os.path.join('data_samples', 'dancing.jpg'))
|
||||
|
@ -94,7 +94,7 @@ method.
|
||||
|
||||

|
||||
|
||||
### Confusion matrices
|
||||
### Confusion Matrices
|
||||
|
||||
Report confusion matrices by calling the [Logger.report_matrix](../../references/sdk/logger.md#report_matrix)
|
||||
method.
|
||||
|
@ -17,7 +17,7 @@ example script from ClearML's GitHub repo:
|
||||
* The [clearml](https://github.com/allegroai/clearml) repository is cloned.
|
||||
* The `clearml` package is installed.
|
||||
|
||||
## Before starting
|
||||
## Before Starting
|
||||
|
||||
Make a copy of `pytorch_mnist.py` in order to add explicit reporting to it.
|
||||
|
||||
@ -26,7 +26,7 @@ Make a copy of `pytorch_mnist.py` in order to add explicit reporting to it.
|
||||
|
||||
cp pytorch_mnist.py pytorch_mnist_tutorial.py
|
||||
|
||||
## Step 1: Setting an output destination for model checkpoints
|
||||
## Step 1: Setting an Output Destination for Model Checkpoints
|
||||
|
||||
Specify a default output location, which is where model checkpoints (snapshots) and artifacts will be stored when the
|
||||
experiment runs. Some possible destinations include:
|
||||
@ -72,7 +72,7 @@ For example, if the Task ID is `9ed78536b91a44fbb3cc7a006128c1b0`, then the dire
|
||||
| +-- models
|
||||
| +-- artifacts
|
||||
|
||||
## Step 2: Logger class reporting methods
|
||||
## Step 2: Logger Class Reporting Methods
|
||||
|
||||
In addition to **ClearML** automagical logging, the **ClearML** Python
|
||||
package contains methods for explicit reporting of plots, log text, media, and tables. These methods include:
|
||||
@ -90,14 +90,14 @@ package contains methods for explicit reporting of plots, log text, media, and t
|
||||
* [Logger.report_media](../../references/sdk/logger.md#report_media) - Report media including images, audio, and video.
|
||||
* [Logger.get_default_upload_destination](../../references/sdk/logger.md#get_default_upload_destination) - Retrieve the destination that is set for uploaded media.
|
||||
|
||||
### Get a logger
|
||||
### Get a Logger
|
||||
|
||||
First, create a logger for the Task using the [Task.get_logger](../../references/sdk/task.md#get_logger)
|
||||
method.
|
||||
|
||||
logger = task.get_logger
|
||||
|
||||
### Plot scalar metrics
|
||||
### Plot Scalar Metrics
|
||||
|
||||
Add scalar metrics using the [Logger.report_scalar](../../references/sdk/logger.md#report_scalar)
|
||||
method to report loss metrics.
|
||||
@ -125,7 +125,7 @@ method to report loss metrics.
|
||||
logger.report_scalar(title='Scalar example {} - epoch'.format(epoch),
|
||||
series='Loss', value=loss.item(), iteration=batch_idx)
|
||||
|
||||
### Plot other (not scalar) data
|
||||
### Plot Other (Not Scalar) Data
|
||||
|
||||
The script contains a function named `test`, which determines loss and correct for the trained model. We add a histogram
|
||||
and confusion matrix to log them.
|
||||
@ -165,19 +165,19 @@ and confusion matrix to log them.
|
||||
logger.report_confusion_matrix(title='Confusion matrix example',
|
||||
series='Test loss / correct', matrix=matrix, iteration=1)
|
||||
|
||||
### Log text
|
||||
### Log Text
|
||||
|
||||
Extend **ClearML** by explicitly logging text, including errors, warnings, and debugging statements. We use the [Logger.report_text](../../references/sdk/logger.md#report_text)
|
||||
method and its argument `level` to report a debugging message.
|
||||
|
||||
logger.report_text('The default output destination for model snapshots and artifacts is: {}'.format(model_snapshots_path ), level=logging.DEBUG)
|
||||
|
||||
## Step 3: Registering artifacts
|
||||
## Step 3: Registering Artifacts
|
||||
|
||||
Registering an artifact uploads it to **ClearML Server**, and if it changes, the change is logged in **ClearML Server**.
|
||||
Currently, **ClearML** supports Pandas DataFrames as registered artifacts.
|
||||
|
||||
### Register the artifact
|
||||
### Register the Artifact
|
||||
|
||||
In the tutorial script, `test` function, we can assign the test loss and correct data to a Pandas DataFrame object and register
|
||||
that Pandas DataFrame using the [Task.register_artifact](../../references/sdk/task.md#register_artifact) method.
|
||||
@ -193,7 +193,7 @@ that Pandas DataFrame using the [Task.register_artifact](../../references/sdk/ta
|
||||
task.register_artifact('Test_Loss_Correct', df, metadata={'metadata string': 'apple',
|
||||
'metadata int': 100, 'metadata dict': {'dict string': 'pear', 'dict int': 200}})
|
||||
|
||||
### Reference the registered artifact
|
||||
### Reference the Registered Artifact
|
||||
|
||||
Once an artifact is registered, it can be referenced and utilized in the Python experiment script.
|
||||
|
||||
@ -205,7 +205,7 @@ methods to take a sample.
|
||||
sample = Task.current_task().get_registered_artifacts()['Test_Loss_Correct'].sample(frac=0.5,
|
||||
replace=True, random_state=1)
|
||||
|
||||
## Step 4: Uploading artifacts
|
||||
## Step 4: Uploading Artifacts
|
||||
|
||||
Artifact can be uploaded to the **ClearML Server**, but changes are not logged.
|
||||
|
||||
@ -225,7 +225,7 @@ method with metadata specified in the `metadata` parameter.
|
||||
metadata={'metadata string': 'banana', 'metadata integer': 300,
|
||||
'metadata dictionary': {'dict string': 'orange', 'dict int': 400}})
|
||||
|
||||
## Additional information
|
||||
## Additional Information
|
||||
|
||||
After extending the Python experiment script, run it and view the results in the **ClearML Web UI**.
|
||||
|
||||
|
@ -22,7 +22,7 @@ function, which reports the **ClearML** documentation's home page.
|
||||
|
||||
Logger.current_logger().report_media("html", "url_html", iteration=iteration, url="https://allegro.ai/docs/index.html")
|
||||
|
||||
## Reporting HTML local files
|
||||
## Reporting HTML Local Files
|
||||
|
||||
Report the following using the `Logger.report_media` parameter method `local_path` parameter:
|
||||
* [Interactive HTML](#interactive-html)
|
||||
|
@ -13,7 +13,7 @@ line options (in the **Args** subsection).
|
||||
|
||||
When the script runs, it creates an experiment named `hyper-parameters example`, which is associated with the `examples` project.
|
||||
|
||||
## argparse command line options
|
||||
## Argparse Command Line Options
|
||||
|
||||
If a code uses argparse and initializes a Task, **ClearML** automatically logs the argparse arguments.
|
||||
|
||||
@ -45,7 +45,7 @@ TensorFlow Definitions appear in **HYPER PARAMETERS** **>** **TF_DEFINE**.
|
||||
|
||||

|
||||
|
||||
## Parameter dictionaries
|
||||
## Parameter Dictionaries
|
||||
|
||||
Connect a parameter dictionary to a Task by calling the [Task.connect](../../references/sdk/task.md#connect)
|
||||
method, and **ClearML** logs the parameters. **ClearML** also tracks changes to the parameters.
|
||||
|
@ -20,7 +20,7 @@ sub-tab.
|
||||
When the script runs, it creates an experiment named `audio and video reporting`, which is associated with the `examples`
|
||||
project.
|
||||
|
||||
## Reporting (uploading) media from a source by URL
|
||||
## Reporting (Uploading) Media from a Source by URL
|
||||
|
||||
Report by calling the [Logger.report_media](../../references/sdk/logger.md#report_media)
|
||||
method using the `url` parameter.
|
||||
@ -40,7 +40,7 @@ The reported audio can be viewed in the **DEBUG SAMPLES** sub-tab. Double click
|
||||

|
||||
|
||||
|
||||
## Reporting (uploading) media from a local file
|
||||
## Reporting (Uploading) Media from a Local File
|
||||
|
||||
Use the `local_path` parameter.
|
||||
|
||||
|
@ -9,9 +9,9 @@ the configuration and label enumeration with it.
|
||||
|
||||
When the script runs, it creates an experiment named `Model configuration example`, which is associated with the `examples` project.
|
||||
|
||||
## Configuring models
|
||||
## Configuring Models
|
||||
|
||||
### Using a configuration file
|
||||
### Using a Configuration File
|
||||
|
||||
Connect a configuration file to a Task by calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
|
||||
method with the file location and the configuration object's name as arguments. In this example, we connect a JSON file and a YAML file
|
||||
@ -29,7 +29,7 @@ in the **yaml file** object, as specified in the `name` parameter of the `connec
|
||||
|
||||

|
||||
|
||||
### Configuration dictionary
|
||||
### Configuration Dictionary
|
||||
|
||||
Connect a configuration dictionary to a Task by creating a dictionary, and then calling the [Task.connect_configuration](../../references/sdk/task.md#connect_configuration)
|
||||
method with the dictionary and the object name as arguments. After the configuration is connected, **ClearML** tracks changes to it.
|
||||
@ -50,7 +50,7 @@ method with the dictionary and the object name as arguments. After the configura
|
||||
|
||||

|
||||
|
||||
## Label enumeration
|
||||
## Label Enumeration
|
||||
|
||||
Connect a label enumeration dictionary by creating the dictionary, and then calling the [Task.connect_label_enumeration](../../references/sdk/task.md#connect_label_enumeration)
|
||||
method with the dictionary as an argument.
|
||||
|
@ -9,7 +9,7 @@ sub-tab.
|
||||
|
||||
When the script runs, it creates an experiment named `pandas table reporting`, which is associated with the `examples` project.
|
||||
|
||||
## Reporting Pandas DataFrames as tables
|
||||
## Reporting Pandas DataFrames as Tables
|
||||
|
||||
Report Pandas DataFrames by calling the [Logger.report_table](../../references/sdk/logger.md#report_table)
|
||||
method, and providing the DataFrame in the `table_plot` parameter.
|
||||
@ -28,7 +28,7 @@ method, and providing the DataFrame in the `table_plot` parameter.
|
||||
|
||||

|
||||
|
||||
## Reporting CSV files as tables
|
||||
## Reporting CSV Files as Tables
|
||||
|
||||
Report CSV files by providing the URL location of the CSV file in the `url` parameter. For a local CSV file, use the `csv` parameter.
|
||||
|
||||
|
@ -84,7 +84,7 @@ method.
|
||||
yaxis_reversed=True,
|
||||
)
|
||||
|
||||
## 2D scatter plots
|
||||
## 2D Scatter Plots
|
||||
|
||||
Report 2D scatter plots by calling the [Logger.report_scatter2d](../../references/sdk/logger.md#report_scatter2d)
|
||||
method. Use the `mode` parameter to plot data points with lines (by default), markers, or both lines and markers.
|
||||
|
@ -9,7 +9,7 @@ In the budget, set the maximum number of each instance type to spin for experime
|
||||
Configure multiple instance types per queue, and multiple queues. The **ClearML** AWS
|
||||
autoscaler will spin down idle instances based on the maximum idle time and the polling interval configurations.
|
||||
|
||||
## Running the ClearML AWS autoscaler
|
||||
## Running the ClearML AWS Autoscaler
|
||||
The **ClearML** AWS autoscaler can execute in [ClearML services mode](../../clearml_agent.md#services-mode),
|
||||
and is configurable.
|
||||
|
||||
@ -23,7 +23,7 @@ Run **ClearML** AWS autoscaler in one of these ways:
|
||||
* Run script locally or as a service.
|
||||
* When executed, a Task is created, named `AWS Auto-Scaler` that associated with the `DevOps` project.
|
||||
|
||||
### Running using the ClearML Web UI
|
||||
### Running Using the ClearML Web UI
|
||||
|
||||
Edit the parameters for the instance types, edit budget configuration by editing the Task, and then enqueue the Task to
|
||||
run in **ClearML Agent** services mode.
|
||||
@ -102,7 +102,7 @@ run in **ClearML Agent** services mode.
|
||||
|
||||
1. In the experiments table, right click the **AWS Auto-Scaler** Task **>** **Enqueue** **>** **services** queue **>** **ENQUEUE**.
|
||||
|
||||
### Running using the script
|
||||
### Running Using the Script
|
||||
|
||||
The [aws_autoscaler.py](https://github.com/allegroai/clearml/blob/master/examples/services/aws-autoscaler/aws_autoscaler.py)
|
||||
script includes a wizard which prompts for instance details and budget configuration.
|
||||
@ -112,7 +112,7 @@ The script can run in two ways:
|
||||
* Configure and enqueue.
|
||||
* Enqueue with an existing configuration.
|
||||
|
||||
#### To configure and enqueue:
|
||||
#### To Configure and Enqueue:
|
||||
|
||||
Use the `run` command line option:
|
||||
|
||||
@ -241,7 +241,7 @@ Execution log https://app.clearml-master.hosted.allegro.ai/projects/142a598b5d23
|
||||
|
||||
<br/>
|
||||
|
||||
#### To enqueue with an existing configuration:
|
||||
#### To Enqueue with an Existing Configuration:
|
||||
|
||||
Use the `remote` command line option:
|
||||
|
||||
|
@ -20,11 +20,11 @@ with options to run locally or as a service.
|
||||
* **ClearML Agent** is [installed and configured](../../clearml_agent.md#installation).
|
||||
* **ClearML Agent** is launched in [services mode](../../clearml_agent.md#services-mode).
|
||||
|
||||
## Running the cleanup service
|
||||
## Running the Cleanup Service
|
||||
|
||||
### Running using the ClearML Web UI
|
||||
### Running Using the ClearML Web UI
|
||||
|
||||
#### Step 1. Configuring the cleanup service
|
||||
#### Step 1. Configuring the Cleanup Service
|
||||
|
||||
1. In the **ClearML Web UI** **Projects** page, click the **DevOps** project **>** click the **Cleanup Service** Task.
|
||||
1. In the info panel, click the **CONFIGURATION** tab.
|
||||
@ -43,14 +43,14 @@ with options to run locally or as a service.
|
||||
|
||||
* Right click the **Cleanup Service** Task **>** **Enqueue** **>** In the queue list, select **services** **>** **ENQUEUE**.
|
||||
|
||||
### Running using the script
|
||||
### Running Using the Script
|
||||
|
||||
The [cleanup_service.py](https://github.com/allegroai/clearml/blob/master/examples/services/cleanup/cleanup_service.py) allows
|
||||
to enqueue the cleanup service to run in **ClearML Agent** services mode, because the `run_as_service` parameter is set to `True`.
|
||||
|
||||
python cleanup_service.py
|
||||
|
||||
## The cleanup service code
|
||||
## The Cleanup Service Code
|
||||
|
||||
[cleanup_service.py](https://github.com/allegroai/clearml/blob/master/examples/services/cleanup/cleanup_service.py) creates
|
||||
a **ClearML** API client session to delete the Tasks. It creates an `APIClient` object that establishes a session with the
|
||||
|
@ -14,7 +14,7 @@ Notebook server by passing environment variables to the subprocess, which point
|
||||
Task. When the script runs, it creates an experiment named `Allocate Jupyter Notebook Instance`, which is associated with
|
||||
the `DevOps` project in the **ClearML Web UI**.
|
||||
|
||||
## Running the Jupyter Notebook server service
|
||||
## Running the Jupyter Notebook Server Service
|
||||
|
||||
1. The example script must run at least once before it can execute as a **ClearML Agent** service, because the Task must
|
||||
be stored in **ClearML Server** in order to be enqueued for a **ClearML Agent** to fetch and execute.
|
||||
@ -36,7 +36,7 @@ the `DevOps` project in the **ClearML Web UI**.
|
||||
The status changes to *Pending* and then to *Running*. Once it is running, the Jupyter Notebook server is ready to
|
||||
run notebooks.
|
||||
|
||||
## Logging the Jupyter Notebook server
|
||||
## Logging the Jupyter Notebook Server
|
||||
|
||||
**ClearML** stores the Jupyter Notebook server links in the `Task.comment` property, which appears in the **ClearML Web UI**
|
||||
**>** the experiment's **INFO** tab **>** **DESCRIPTION** section.
|
||||
|
@ -43,14 +43,14 @@ The Slack API token and channel you create are required to configure the Slack a
|
||||
1. In the confirmation dialog, click **Allow**.
|
||||
1. Click **Copy** to copy the **Bot User OAuth Access Token**.
|
||||
|
||||
## Running the service
|
||||
## Running the Service
|
||||
There are two options to run the Slack alerts service:
|
||||
* [Using the ClearML Web UI](#running-using-the-clearml-web-ui)
|
||||
* [Using the script](#running-using-the-script)
|
||||
|
||||
### Running using the ClearML Web UI
|
||||
### Running Using the ClearML Web UI
|
||||
|
||||
#### Step 1. Configuring the service
|
||||
#### Step 1. Configuring the Service
|
||||
|
||||
1. In the **ClearML Web UI** **Projects** page, click the **Monitoring** project **>** click the **Slack Alerts** Task.
|
||||
1. In the info panel, click the **CONFIGURATION** tab.
|
||||
@ -73,11 +73,11 @@ There are two options to run the Slack alerts service:
|
||||
**services**.
|
||||
* **slack_api** - The Slack API key. The default value can be set in the environment variable, `SLACK_API_TOKEN` (MANDATORY).
|
||||
|
||||
#### Step 2. Enqueuing the service
|
||||
#### Step 2. Enqueuing the Service
|
||||
|
||||
* Right click the **Monitoring** Task **>** **Enqueue** **>** Select **services** **>** **ENQUEUE**.
|
||||
|
||||
### Running using the script
|
||||
### Running Using the Script
|
||||
|
||||
The [slack_alerts.py](https://github.com/allegroai/clearml/blob/master/examples/services/monitoring/slack_alerts.py)
|
||||
allows to configure the monitoring service, and then either:
|
||||
@ -109,7 +109,7 @@ allows to configure the monitoring service, and then either:
|
||||
* ``local`` - If ``True``, run locally only instead of as a service. If ``False``, then automatically enqueue the Task
|
||||
to run in **ClearML Agent** services mode. The default value is ``False``.
|
||||
|
||||
## Additional information about slack_alerts.py
|
||||
## Additional Information about slack_alerts.py
|
||||
|
||||
In `slack_alerts.py`, the class `SlackMonitor` inherits from the `Monitor` class in `clearml.automation.monitor`.
|
||||
`SlackMonitor` overrides the following `Monitor` class methods:
|
||||
|
@ -6,7 +6,7 @@ If your computer is offline, or you do not want a Task's data and logs stored in
|
||||
the **Offline Mode** option. In this mode, all the data and logs that the Task captures from the code are stored in a
|
||||
local folder, which can be later uploaded to the [ClearML Server](../deploying_clearml/clearml_server.md).
|
||||
|
||||
## Setting Task to offline mode
|
||||
## Setting Task to Offline Mode
|
||||
|
||||
Before initializing a Task, use the [Task.set_offline](../references/sdk/task.md#taskset_offline) class method and set the
|
||||
`offline_mode` argument to `True`.
|
||||
@ -33,7 +33,7 @@ ClearML Task: Offline session stored in /home/user/.clearml/cache/offline/b78684
|
||||
All the information captured by the Task is saved locally. Once the task script finishes execution, it's zipped. The
|
||||
session's zip folder's location is `~/.clearml/cache/offline/<task_id>.zip`.
|
||||
|
||||
## Uploading local session
|
||||
## Uploading Local Session
|
||||
|
||||
In order to upload to the ClearML Server the local execution data that the Task captured offline, use the
|
||||
[Task.import_offline_session](../references/sdk/task.md#taskimport_offline_session) method. This method will upload the
|
||||
|
@ -16,7 +16,7 @@ class. The storage examples include:
|
||||
## StorageManager
|
||||
|
||||
|
||||
### Downloading a file
|
||||
### Downloading a File
|
||||
|
||||
To download a ZIP file from storage to the `global` cache context, call the [StorageManager.get_local_copy](../../references/sdk/storage.md#storagemanagerget_local_copy)
|
||||
method, and specify the destination location as the `remote_url` argument:
|
||||
@ -39,7 +39,7 @@ To download a non-compressed file, set the `extract_archive` argument to `False`
|
||||
manager.get_local_copy(remote_url="s3://MyBucket/MyFolder/file.ext", extract_archive=False)
|
||||
|
||||
|
||||
### Uploading a file
|
||||
### Uploading a File
|
||||
|
||||
To upload a file to storage, call the [StorageManager.upload_file](../../references/sdk/storage.md#storagemanagerupload_file)
|
||||
method. Specify the full path of the local file as the `local_file` argument, and the remote URL as the `remote_url`
|
||||
@ -48,7 +48,7 @@ argument.
|
||||
manager.upload_file(local_file="/mnt/data/also_file.ext", remote_url="s3://MyBucket/MyFolder")
|
||||
|
||||
|
||||
### Setting cache limits
|
||||
### Setting Cache Limits
|
||||
|
||||
To set a limit on the number of files cached, call the [StorageManager.set_cache_file_limit](../../references/sdk/storage.md#storagemanagerset_cache_file_limit)
|
||||
method and specify the `cache_file_limit` argument as the maximum number of files. This does not limit the cache size,
|
||||
|
@ -21,7 +21,7 @@ For this tutorial, use one of the following as a project:
|
||||
* A project on the demo **ClearML Server** ([https://demoapp.demo.clear.ml/profile](https://demoapp.demo.clear.ml/profile)).
|
||||
* Clone the [clearml](https://github.com/allegroai/clearml) repository and execute some of the example scripts.
|
||||
|
||||
## Step 1: Select a project
|
||||
## Step 1: Select a Project
|
||||
|
||||
The leaderboard will track experiments in one or all projects.
|
||||
|
||||
@ -29,7 +29,7 @@ Begin by opening the **ClearML Web UI** and selecting a project, by doing one of
|
||||
* On the Home page, click a project card or **VIEW ALL**.
|
||||
* On the Projects page, click a project card or the **All projects** card.
|
||||
|
||||
## Step 2: Filter the experiments
|
||||
## Step 2: Filter the Experiments
|
||||
|
||||
The experiments table allows filtering experiments by experiment name, type, and status.
|
||||
|
||||
@ -52,7 +52,7 @@ The experiments table allows filtering experiments by experiment name, type, and
|
||||
* **Aborted** - The experiment ran and was manually or programmatically terminated.
|
||||
* **Published** - The experiment is not running, it is preserved as read-only.
|
||||
|
||||
## Step 3: Hide the defaults column
|
||||
## Step 3: Hide the Defaults Column
|
||||
|
||||
Customize the columns on the tracking leaderboard by hiding any of the default columns shown below.
|
||||
|
||||
@ -70,7 +70,7 @@ Customize the columns on the tracking leaderboard by hiding any of the default c
|
||||
* **UPDATED** - The elapsed time since the experiment update.
|
||||
* **ITERATION** - The last iteration of the experiment. For experiments with a status of Running, this is the most recent iteration. For Completed, Aborted, and Failed experiments, this is the final iteration.
|
||||
|
||||
## Step 4: Show metrics or hyperparameters
|
||||
## Step 4: Show Metrics or Hyperparameters
|
||||
|
||||
The leaderboard can contain any combination of metrics and hyperparameters. For each metric, choose whether to view the last (most
|
||||
recent), minimum, and / or maximum values.
|
||||
@ -82,7 +82,7 @@ recent), minimum, and / or maximum values.
|
||||
the leaderboard, and select the metric values (min / max / last).
|
||||
1. For hyperparameters, click **+ HYPER PARAMETERS**, and then select the hyperparameter checkboxes of those to show in the leaderboard.
|
||||
|
||||
## Step 5: Enable auto refresh
|
||||
## Step 5: Enable Auto Refresh
|
||||
|
||||
Auto refresh allows monitoring the progress of experiments in real time. It is enabled by default.
|
||||
|
||||
@ -90,7 +90,7 @@ Auto refresh allows monitoring the progress of experiments in real time. It is e
|
||||
|
||||
* Hover over refresh and then check / uncheck the **Auto Refresh** checkbox.
|
||||
|
||||
## Step 6: Save the tracking leaderboard
|
||||
## Step 6: Save the Tracking Leaderboard
|
||||
|
||||
The URL for **ClearML Web UI** now contains parameters and values for the customized leaderboard. Bookmark it to be able
|
||||
to return to the leaderboard and monitor the experiments.
|
||||
|
@ -12,13 +12,13 @@ example script.
|
||||
for the TensorFlow examples.
|
||||
* Have **ClearML Agent** [installed and configured](../../clearml_agent.md#installation).
|
||||
|
||||
## Step 1: Run the experiment
|
||||
## Step 1: Run the Experiment
|
||||
|
||||
In the `examples/frameworks/pytorch` directory, run the experiment script:
|
||||
|
||||
python pytorch_mnist.py
|
||||
|
||||
## Step 2: Clone the experiment
|
||||
## Step 2: Clone the Experiment
|
||||
|
||||
Clone the experiment to create an editable copy for tuning.
|
||||
|
||||
@ -28,7 +28,7 @@ Clone the experiment to create an editable copy for tuning.
|
||||
|
||||
1. In the context menu, click **Clone** **>** **CLONE**. The newly cloned experiment appears and its info panel slides open.
|
||||
|
||||
## Step 3: Tune the cloned experiment
|
||||
## Step 3: Tune the Cloned Experiment
|
||||
|
||||
To demonstrate tuning, change two hyperparameter values.
|
||||
|
||||
@ -40,7 +40,7 @@ To demonstrate tuning, change two hyperparameter values.
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Step 4: Run a worker daemon listening to a queue
|
||||
## Step 4: Run a Worker Daemon Listening to a Queue
|
||||
|
||||
To execute the cloned experiment, use a worker that can run a worker daemon listening to a queue.
|
||||
|
||||
@ -78,7 +78,7 @@ Run the worker daemon on the local development machine.
|
||||
|
||||
Running CLEARML-AGENT daemon in background mode, writing stdout/stderr to /home/<username>/.clearml_agent_daemon_outym6lqxrz.txt
|
||||
|
||||
## Step 5: Enqueue the tuned experiment
|
||||
## Step 5: Enqueue the Tuned Experiment
|
||||
|
||||
Enqueue the tuned experiment.
|
||||
|
||||
@ -92,7 +92,7 @@ Enqueue the tuned experiment.
|
||||
the status becomes Running. The progress of the experiment can be viewed in the info panel. When the status becomes
|
||||
Completed, continue to the next step.
|
||||
|
||||
## Step 6: Compare the experiments
|
||||
## Step 6: Compare the Experiments
|
||||
|
||||
To compare the original and tuned experiments:
|
||||
1. In the **ClearML Web-App (UI)**, on the Projects page, click the `examples` project.
|
||||
|
@ -8,7 +8,7 @@ Metadata can be customized as needed using: **meta** dictionaries:
|
||||
|
||||
## Usage
|
||||
|
||||
### Adding Frame metadata
|
||||
### Adding Frame Metadata
|
||||
|
||||
When instantiating a Frame, metadata that applies for the entire frame can be
|
||||
added as an argument.
|
||||
@ -28,7 +28,7 @@ frame = SingleFrame(
|
||||
frame.metadata['dangerous'] = 'no'
|
||||
```
|
||||
|
||||
### Adding ROI metadata
|
||||
### Adding ROI Metadata
|
||||
|
||||
Metadata can be added to individual ROIs when adding an annotation to a `frame`, using the `add_annotation`
|
||||
method.
|
||||
|
@ -80,7 +80,7 @@ myDataset = DatasetVersion.create_new_dataset(dataset_name='myDataset',
|
||||
description='some description text')
|
||||
```
|
||||
|
||||
### Accessing current Dataset
|
||||
### Accessing Current Dataset
|
||||
|
||||
To get the current Dataset, use the `DatasetVersion.get_current` method.
|
||||
|
||||
@ -134,7 +134,7 @@ a Dataset version that yields a parent with two children, or when publishing the
|
||||
|
||||
Manage Dataset versioning using the DatasetVersion class in the ClearML Enterprise SDK.
|
||||
|
||||
### Creating snapshots
|
||||
### Creating Snapshots
|
||||
|
||||
If the Dataset contains only one version whose status is *Draft*, snapshots of the current version can be created.
|
||||
When creating a snapshot, the current version becomes the snapshot (it keeps the same version ID),
|
||||
@ -143,7 +143,7 @@ and the newly created version (with its new version ID) becomes the current vers
|
||||
To create a snapshot, use the `DatasetVersion.create_snapshot` method.
|
||||
|
||||
|
||||
#### Snapshot naming
|
||||
#### Snapshot Naming
|
||||
|
||||
In the simple version structure, ClearML Enterprise supports two methods for snapshot naming:
|
||||
* **Timestamp naming** - If only the Dataset name or ID is provided, the snapshot is named `snapshot` with a timestamp
|
||||
@ -172,7 +172,7 @@ In the simple version structure, ClearML Enterprise supports two methods for sna
|
||||
The newly created version (with a new version ID) becomes the current version, and its name is `Current`.
|
||||
|
||||
|
||||
#### Current version naming
|
||||
#### Current Version Naming
|
||||
|
||||
In the simple version structure, ClearML Enterprise supports two methods for current version naming:
|
||||
|
||||
@ -189,7 +189,7 @@ myDataset = DatasetVersion.create_snapshot(dataset_name='MyDataset',
|
||||
child_name='NewCurrentVersionName')
|
||||
```
|
||||
|
||||
#### Adding metadata and comments
|
||||
#### Adding Metadata and Comments
|
||||
|
||||
Add a metadata dictionary and / or comment to a snapshot.
|
||||
|
||||
@ -201,7 +201,7 @@ myDataset = DatasetVersion.create_snapshot(dataset_name='MyDataset',
|
||||
child_comment='some text comment')
|
||||
```
|
||||
|
||||
### Creating child versions
|
||||
### Creating Child Versions
|
||||
|
||||
Create a new version from any version whose status is *Published*.
|
||||
|
||||
@ -230,7 +230,7 @@ myVersion = DatasetVersion.create_version(dataset_name='MyDataset',
|
||||
raise_if_exists=True))
|
||||
```
|
||||
|
||||
### Creating root-level parent versions
|
||||
### Creating Root-level Parent Versions
|
||||
|
||||
Create a new version at the root-level. This is a version without a parent, and it contains no frames.
|
||||
|
||||
@ -239,7 +239,7 @@ myDataset = DatasetVersion.create_version(dataset_name='MyDataset',
|
||||
version_name='NewRootVersion')
|
||||
```
|
||||
|
||||
### Getting versions
|
||||
### Getting Versions
|
||||
|
||||
To get a version or versions, use the `DatasetVersion.get_version` and `DatasetVersion.get_versions`
|
||||
methods, respectively.
|
||||
@ -279,7 +279,7 @@ myDatasetversion = DatasetVersion.get_version(dataset_name='MyDataset',
|
||||
version_name='VersionName')
|
||||
```
|
||||
|
||||
### Deleting versions
|
||||
### Deleting Versions
|
||||
|
||||
Delete versions which are status *Draft* using the `Dataset.delete_version` method.
|
||||
|
||||
@ -291,7 +291,7 @@ myDataset.delete_version(version_name='VersionToDelete')
|
||||
```
|
||||
|
||||
|
||||
### Publishing versions
|
||||
### Publishing Versions
|
||||
|
||||
Publish (make read-only) versions which are status *Draft* using the `Dataset.publish_version` method. This includes the current version, if the Dataset is in
|
||||
the simple version structure.
|
||||
|
@ -41,7 +41,7 @@ A frame filter contains the following criteria:
|
||||
|
||||
Use combinations of these frame filters to build sophisticated queries.
|
||||
|
||||
## Debiasing input data
|
||||
## Debiasing Input Data
|
||||
|
||||
Apply debiasing to each frame filter to adjust for an imbalance in input data. Ratios (weights) enable setting the proportion
|
||||
of frames that are inputted, according to any of the criteria in a frame filter, including ROI labels, frame metadata,
|
||||
@ -52,7 +52,7 @@ you want to input the same number of both. To debias the data, create two frame
|
||||
of `1`, and the other for `nighttime` with a ratio of `5`. The Dataview will iterate approximately an equal number of
|
||||
SingleFrames for each.
|
||||
|
||||
## ROI Label mapping (label translation)
|
||||
## ROI Label Mapping (Label Translation)
|
||||
|
||||
ROI label mapping (label translation) applies to the new model. For example, apply mapping to:
|
||||
|
||||
@ -60,12 +60,12 @@ ROI label mapping (label translation) applies to the new model. For example, app
|
||||
* Consolidate disparate datasets containing different names for the ROI.
|
||||
* Hide labeled objects from the training process.
|
||||
|
||||
## Class label enumeration
|
||||
## Class Label Enumeration
|
||||
|
||||
Define class labels for the new model and assign integers to each in order to maintain data conformity across multiple
|
||||
codebases and datasets. It is important to set enumeration values for all labels of importance.
|
||||
|
||||
## Data augmentation
|
||||
## Data Augmentation
|
||||
|
||||
On-the-fly data augmentation is applied to SingleFrames, transforming images without creating new data. Apply data augmentation
|
||||
in steps, where each step is composed of a method, an operation, and a strength as follows:
|
||||
@ -99,7 +99,7 @@ in steps, where each step is composed of a method, an operation, and a strength
|
||||
* 1.0 - Medium (recommended)
|
||||
* 2.0 - High (strong)
|
||||
|
||||
## Iteration control
|
||||
## Iteration Control
|
||||
|
||||
The input data **iteration control** settings determine the order, number, timing, and reproducibility of the Dataview iterating
|
||||
SingleFrames. Depending upon the combination of iteration control settings, all SingleFrames may not be iterated, and some
|
||||
@ -141,7 +141,7 @@ from allegroai import DataView, IterationOrder
|
||||
myDataView = DataView(iteration_order=IterationOrder.random, iteration_infinite=True)
|
||||
```
|
||||
|
||||
### Adding queries
|
||||
### Adding Queries
|
||||
|
||||
To add a query to a DataView, use the `DataView.add_query` method and specify Dataset versions,
|
||||
ROI and / or frame queries, and other criteria.
|
||||
@ -154,7 +154,7 @@ specify the queries.
|
||||
Multiple queries can be added to the same or different Dataset versions, each query with the same or different ROI
|
||||
and / or frame queries.
|
||||
|
||||
#### ROI queries:
|
||||
#### ROI Queries:
|
||||
|
||||
* ROI query for a single label
|
||||
|
||||
@ -206,7 +206,7 @@ myDataView.add_query(dataset_name='myDataset', version_name='training',
|
||||
roi_query='label.keyword:\"Car\" AND NOT label.keyword:\"partly_occluded\"')
|
||||
```
|
||||
|
||||
#### Querying multiple Datasets and versions
|
||||
#### Querying Multiple Datasets and Versions
|
||||
|
||||
This example demonstrates an ROI query filtering for frames containing the ROI labels `car`, `truck`, or `bicycle`
|
||||
from two versions of one Dataset, and one version of another Dataset.
|
||||
@ -234,7 +234,7 @@ myDataView.add_query(dataset_name='dataset_2',
|
||||
|
||||
```
|
||||
|
||||
#### Frame queries
|
||||
#### Frame Queries
|
||||
|
||||
Use frame queries to filter frames by ROI labels and / or frame metadata key-value pairs that a frame must include or
|
||||
exclude for the DataView to return the frame.
|
||||
@ -252,13 +252,13 @@ myDataView.add_query(dataset_name='myDataset',
|
||||
```
|
||||
|
||||
|
||||
### Controlling query iteration
|
||||
### Controlling Query Iteration
|
||||
|
||||
Use `DataView.set_iteration_parameters` to manage the order, number, timing, and reproducibility of frames
|
||||
for training.
|
||||
|
||||
|
||||
#### Iterate frames infinitely
|
||||
#### Iterate Frames Infinitely
|
||||
|
||||
This example demonstrates creating a Dataview and setting its parameters to iterate infinitely until the script is
|
||||
manually terminated.
|
||||
@ -271,7 +271,7 @@ myDataView = DataView()
|
||||
myDataView.set_iteration_parameters(order=IterationOrder.random, infinite=True)
|
||||
```
|
||||
|
||||
#### Iterate all frames matching the query
|
||||
#### Iterate All Frames Matching the Query
|
||||
This example demonstrates creating a DataView and setting its parameters to iterate and return all frames matching a query.
|
||||
|
||||
```python
|
||||
@ -287,7 +287,7 @@ myDataView.add_query(dataset_name='myDataset',
|
||||
version_name='myVersion', roi_query='cat')
|
||||
```
|
||||
|
||||
#### Iterate a maximum number of frames
|
||||
#### Iterate a Maximum Number of Frames
|
||||
This example demonstrates creating a DataView and setting its parameters to iterate a specific number of frames. If the
|
||||
Dataset version contains fewer than that number of frames matching the query, then fewer are returned by the iterator.
|
||||
|
||||
@ -301,7 +301,7 @@ myDataView.set_iteration_parameters(
|
||||
maximum_number_of_frames=5000)
|
||||
```
|
||||
|
||||
### Debiasing input data
|
||||
### Debiasing Input Data
|
||||
|
||||
Debias input data using the `DataView.add_query` method's `weight` argument to add weights. This
|
||||
is the same `DataView.add_query` that can be used to specify Dataset versions, and ROI queries and frame queries.
|
||||
|
@ -100,7 +100,7 @@ myVersion.update_frames(frames)
|
||||
|
||||
```
|
||||
|
||||
### Deleting frames
|
||||
### Deleting Frames
|
||||
|
||||
To delete a FrameGroup, use the `DatasetVersion.delete_frames` method, just like when deleting a
|
||||
SingleFrame, except that a FrameGroup is being referenced.
|
||||
|
@ -30,7 +30,7 @@ See [Example 1](#example-1), which shows `masks` in `sources`, `mask` in `rois`,
|
||||
a mask to its source in a frame.
|
||||
|
||||
|
||||
## Masks structure
|
||||
## Masks Structure
|
||||
|
||||
The chart below explains the keys and values of the `masks` dictionary (in the [`sources`](sources.md)
|
||||
section of a Frame).
|
||||
|
@ -19,7 +19,7 @@ list of source IDs. Those IDs connect `sources` to ROIs.
|
||||
|
||||
The examples below demonstrate the `sources` section of a Frame for different types of content.
|
||||
|
||||
### Example 1: Video sources
|
||||
### Example 1: Video Sources
|
||||
|
||||
This example demonstrates `sources` for video.
|
||||
|
||||
@ -70,7 +70,7 @@ is the source with the ID `front` and the other is the source with the ID `rear`
|
||||
Sources includes a variety of content types. This example shows mp4 video.
|
||||
:::
|
||||
|
||||
### Example 2: Images sources
|
||||
### Example 2: Images Sources
|
||||
|
||||
This example demonstrates `sources` images.
|
||||
<details className="cml-expansion-panel info">
|
||||
@ -101,7 +101,7 @@ The `sources` of this frame contains the following information:
|
||||
* `timestamp` is 0 (timestamps are used for video).
|
||||
|
||||
|
||||
### Example 3: Sources and regions of interest
|
||||
### Example 3: Sources and Regions of Interest
|
||||
|
||||
This example demonstrates `sources` for video, `masks`, and `preview`.
|
||||
|
||||
|
@ -42,30 +42,30 @@ Use annotation tasks to efficiently organize the annotation of frames in Dataset
|
||||
|
||||
1. Click **Create**.
|
||||
|
||||
### Completing annotation tasks
|
||||
### Completing Annotation Tasks
|
||||
|
||||
To mark an annotation task as **Completed**:
|
||||
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu) **>** **Complete** **>** **CONFIRM**.
|
||||
|
||||
### Deleting annotation tasks
|
||||
### Deleting Annotation Tasks
|
||||
|
||||
To delete an annotation task:
|
||||
|
||||
* In the annotation task card, click <img src="/docs/latest/icons/ico-bars-menu.svg" className="icon size-md space-sm" /> (menu) **>** **Delete** **>** **CONFIRM**.
|
||||
|
||||
### Filtering annotation tasks
|
||||
### Filtering Annotation Tasks
|
||||
|
||||
There are two option for filtering annotation tasks:
|
||||
|
||||
* Active / Completed Filter - Toggle to show annotation tasks that are either **Active** or **Completed**
|
||||
* Dataset Filter - Use to view only the annotation tasks for a specific Dataset.
|
||||
|
||||
### Sorting annotation tasks
|
||||
### Sorting annotation Tasks
|
||||
|
||||
Sort the annotation tasks by either using **RECENT** or **NAME** from the drop-down menu on the top left of the page.
|
||||
|
||||
### Viewing annotation task information
|
||||
### Viewing Annotation Task Information
|
||||
|
||||
To View the Dataset version, filters, and iteration information:
|
||||
|
||||
@ -87,7 +87,7 @@ depend upon the settings in the annotation task (see [Creating Annotation Tasks]
|
||||
1. See instructions below about annotating frames.
|
||||
|
||||
|
||||
#### Add FrameGroup objects
|
||||
#### Add FrameGroup Objects
|
||||
|
||||
1. Select an annotation mode and add the bounded area to the frame image.
|
||||
|
||||
@ -100,63 +100,63 @@ depend upon the settings in the annotation task (see [Creating Annotation Tasks]
|
||||
1. Optionally, add metadata.
|
||||
1. Optionally, lock the annotation.
|
||||
|
||||
#### Add frame labels
|
||||
#### Add Frame Labels
|
||||
|
||||
1. In **FRAME LABEL**, click **+ Add new**.
|
||||
1. In the new label area, choose or enter a label.
|
||||
1. Optionally, add metadata.
|
||||
1. Optionally, lock the annotation.
|
||||
|
||||
#### Copy / paste an annotations
|
||||
#### Copy / Paste an Annotations
|
||||
|
||||
1. Click the annotation or bounded area in the image or video clip.
|
||||
1. Optionally, navigate to a different frame.
|
||||
1. Click **PASTE**. The new annotation appears in the same location as the one you copied.
|
||||
1. Optionally, to paste the same annotation, again, click **PASTE**.
|
||||
|
||||
#### Copy / paste all annotations
|
||||
#### Copy / Paste All Annotations
|
||||
|
||||
1. Click **COPY ALL**.
|
||||
1. Optionally, navigate to a different frame.
|
||||
1. Click **PASTE**.
|
||||
|
||||
#### Move annotations
|
||||
#### Move Annotations
|
||||
|
||||
* Move a bounded area by clicking on it and dragging.
|
||||
|
||||
#### Resize annotations
|
||||
#### Resize Annotations
|
||||
|
||||
* Resize a bounded area by clicking on a vertex and dragging.
|
||||
|
||||
#### Delete annotations
|
||||
#### Delete Annotations
|
||||
|
||||
1. Click the annotation or bounded area in the image or video clip.
|
||||
1. Press **DELETE** or in the annotation, click **>X**.
|
||||
|
||||
#### Add labels
|
||||
#### Add Labels
|
||||
|
||||
* Click in the annotation and choose a label from the label list, or type a new label.
|
||||
|
||||
#### Modify labels
|
||||
#### Modify Labels
|
||||
|
||||
* In the annotation label textbox, choose a label from the list or type a new label.
|
||||
|
||||
#### Delete labels
|
||||
#### Delete Labels
|
||||
|
||||
* In the annotation, in the label area, click the label's **X**.
|
||||
|
||||
#### Modify annotation metadata
|
||||
#### Modify Annotation Metadata
|
||||
|
||||
* In the label, click edit and then in the popup modify the metadata dictionary (in JSON format).
|
||||
|
||||
#### Modify annotation color
|
||||
#### Modify Annotation Color
|
||||
|
||||
* Modify the color of an area by clicking the circle in the label name and select a new color.
|
||||
|
||||
#### Lock / unlock annotations
|
||||
#### Lock / Unlock Annotations
|
||||
|
||||
* Click the lock.
|
||||
|
||||
#### Modify frame metadata
|
||||
#### Modify Frame Metadata
|
||||
|
||||
* Expand the **FRAME METADATA** area, click edit, and then in the popup modify the metadata dictionary (in JSON format).
|
||||
|
@ -10,7 +10,7 @@ The Datasets page offers the following functionalities:
|
||||
|
||||

|
||||
|
||||
## Dataset cards
|
||||
## Dataset Cards
|
||||
|
||||
Dataset cards show summary information about versions, frames, and labels in a Dataset, and the elapsed time since the Dataset was last update and the user doing the update. Dataset cards allow you to open a specific Dataset to perform Dataset versioning and frames management.
|
||||
|
||||
@ -26,7 +26,7 @@ Dataset cards show summary information about versions, frames, and labels in a D
|
||||
To change the label color coding, hover over a label color, click thr hand pointer, and then select a new color.
|
||||
:::
|
||||
|
||||
## Creating new Datasets
|
||||
## Creating New Datasets
|
||||
|
||||
Create a new Dataset which will contain one version named `Current`. The new version will not contain any frames.
|
||||
|
||||
|
@ -9,7 +9,7 @@ filtering logic.
|
||||
|
||||

|
||||
|
||||
## Frame viewer
|
||||
## Frame Viewer
|
||||
|
||||
Frame viewer allows you to view and edit annotations which can be FrameGroup objects (Regions of Interest) and FrameGroup
|
||||
labels applied to the entire frame not a region of the frame, the frame details (see [frames](../frames.md)),
|
||||
@ -17,7 +17,7 @@ frame metadata, the raw data source URI, as well as providing navigation and vie
|
||||
|
||||

|
||||
|
||||
### Frame viewer controls
|
||||
### Frame Viewer Controls
|
||||
|
||||
Use frame viewer controls to navigate between frames in a Dataset Version, and control frame changes and viewing.
|
||||
|
||||
@ -39,14 +39,14 @@ Use frame viewer controls to navigate between frames in a Dataset Version, and c
|
||||
|
||||
#### Additional keyboard shortcuts
|
||||
|
||||
**General controls**
|
||||
**General Controls**
|
||||
|
||||
|Control|Action|
|
||||
|----|-----|
|
||||
|Hold Spacebar + Press and hold image + Drag| Move around image. NOTE: If using a touchpad, this only works if the *Disable touchpad while typing* setting is turned off |
|
||||
|Esc | Escape frame viewer and return to dataset page |
|
||||
|
||||
**General annotation controls**
|
||||
**General Annotation Controls**
|
||||
|
||||
|Control|Action|
|
||||
|----|-----|
|
||||
@ -63,7 +63,7 @@ Use frame viewer controls to navigate between frames in a Dataset Version, and c
|
||||
| Enter | Key points (<img src="/docs/latest/icons/ico-keypoint-icon-purple.svg" alt="Key points mode" className="icon size-md space-sm" />) | Complete annotation |
|
||||
| Esc | Key points (<img src="/docs/latest/icons/ico-keypoint-icon-purple.svg" alt="Key points mode" className="icon size-md space-sm" />), Polygon (<img src="/docs/latest/icons/ico-polygon-icon-purple.svg" alt="Polygon mode" className="icon size-md space-sm" />) | Cancel annotation process |
|
||||
|
||||
### Viewing and editing frames
|
||||
### Viewing and Editing Frames
|
||||
|
||||
**To view / edit a frame in the frame editor**
|
||||
|
||||
@ -94,8 +94,8 @@ a dropdown list in the **Current Source** section.
|
||||
|
||||

|
||||
|
||||
## Filtering frames
|
||||
### Simple frame filtering
|
||||
## Filtering Frames
|
||||
### Simple Frame Filtering
|
||||
|
||||
Simple frame filtering applies one annotation object (ROI) label and returns frames containing at least one annotation
|
||||
with that label.
|
||||
@ -130,7 +130,7 @@ For example:
|
||||
</div>
|
||||
</details>
|
||||
|
||||
### Advanced frame filtering
|
||||
### Advanced Frame Filtering
|
||||
|
||||
Advanced frame filtering applies sophisticated filtering logic, which is composed of as many frame filters as needed,
|
||||
where each frame filter can be a combination of ROI, frame, and source rules.
|
||||
@ -156,7 +156,7 @@ where each frame filter can be a combination of ROI, frame, and source rules.
|
||||
|
||||
### Examples
|
||||
|
||||
#### ROI rules
|
||||
#### ROI Rules
|
||||
|
||||
|
||||
* Create one ROI rule for <code>person</code> shows the same three frames as the simple frame filter (above).
|
||||
@ -194,7 +194,7 @@ where each frame filter can be a combination of ROI, frame, and source rules.
|
||||
<br/>
|
||||
|
||||
|
||||
#### Frame rules
|
||||
#### Frame Rules
|
||||
|
||||
Filter by metadata using Lucene queries.
|
||||
|
||||
@ -223,7 +223,7 @@ Filter by metadata using Lucene queries.
|
||||
<br/>
|
||||
|
||||
|
||||
#### Source rules
|
||||
#### Source Rules
|
||||
|
||||
Filter by sources using Lucene queries.
|
||||
|
||||
@ -243,7 +243,7 @@ Use Lucene queries in ROI label filters and frame rules.
|
||||
|
||||
## Annotations
|
||||
|
||||
### Frame objects (Regions of Interest)
|
||||
### Frame Objects (Regions of Interest)
|
||||
|
||||
You can add annotations by drawing new bounding areas, and copying existing annotations in the same or other frames.
|
||||
|
||||
@ -288,7 +288,7 @@ You can add annotations by drawing new bounding areas, and copying existing anno
|
||||
1. Optionally, navigate to a different frame.
|
||||
1. Click **PASTE**.
|
||||
|
||||
### Frame labels
|
||||
### Frame Labels
|
||||
|
||||
**To add frame labels:**
|
||||
|
||||
@ -297,7 +297,7 @@ You can add annotations by drawing new bounding areas, and copying existing anno
|
||||
1. Enter a label.
|
||||
1. Optionally, click <img src="/docs/latest/icons/ico-edit.svg" className="icon size-md space-sm" />.
|
||||
|
||||
### Annotation management
|
||||
### Annotation Management
|
||||
|
||||
**To move annotations:**
|
||||
|
||||
@ -331,7 +331,7 @@ You can add annotations by drawing new bounding areas, and copying existing anno
|
||||
* Change - In the annotation label textbox, choose a label from the list or type a new label.
|
||||
* Delete - In the annotation, in the label area, click the label's **X**.
|
||||
|
||||
## Frame metadata
|
||||
## Frame Metadata
|
||||
|
||||
**To edit frame metadata:**
|
||||
|
||||
|
@ -7,7 +7,7 @@ deleting Dataset versions.
|
||||
|
||||
From the Datasets page, click on one of the Datasets in order to see and work with its versions.
|
||||
|
||||
### Viewing snapshots
|
||||
### Viewing Snapshots
|
||||
|
||||
View snapshots in the simple version structure using either:
|
||||
|
||||
@ -35,7 +35,7 @@ chronological order, with oldest at the top, and the most recent at the bottom.
|
||||
</div>
|
||||
</details>
|
||||
|
||||
### Creating snapshots
|
||||
### Creating Snapshots
|
||||
|
||||
To create a snapshot, you must be in the simple (version table) view.
|
||||
|
||||
@ -54,7 +54,7 @@ To create a snapshot, you must be in the simple (version table) view.
|
||||
The WebApp (UI) does not currently support the automatic naming of snapshots with timestamps appended. You must provide a snapshot name.
|
||||
:::
|
||||
|
||||
### Creating versions
|
||||
### Creating Versions
|
||||
|
||||
To create a version, you must be in the advanced (version tree) view.
|
||||
|
||||
@ -66,7 +66,7 @@ To create a version, you must be in the advanced (version tree) view.
|
||||
1. Enter a version name, and optionally a description.
|
||||
1. Click **CREATE**.
|
||||
|
||||
### Publishing versions
|
||||
### Publishing Versions
|
||||
|
||||
Publish (make read-only) any Dataset version whose status is *Draft*. If the Dataset is in the simple structure,
|
||||
and you publish the current version, then only the advanced view is available,
|
||||
@ -79,7 +79,7 @@ and you cannot create snapshots.
|
||||
1. Click **PUBLISH**.
|
||||
1. Click **PUBLISH** again to confirm.
|
||||
|
||||
### Exporting frames
|
||||
### Exporting Frames
|
||||
|
||||
Frame exports downloaded filtered frames as a JSON file.
|
||||
|
||||
@ -88,20 +88,20 @@ Frame exports downloaded filtered frames as a JSON file.
|
||||
* In the Thumbnails area, click **EXPORT FRAMES**. The frames JSON file downloads.
|
||||
|
||||
|
||||
### Modifying version names
|
||||
### Modifying Version Names
|
||||
|
||||
**To modify a Dataset version name, do the following:**
|
||||
|
||||
* At the top right of the Dataset page, hover over the Dataset version name, click <img src="/docs/latest/icons/ico-edit.svg" className="icon size-md space-sm" /> , edit the name, and then click <img src="/docs/latest/icons/ico-save.svg" className="icon size-md space-sm" /> (check).
|
||||
|
||||
### Modifying version descriptions
|
||||
### Modifying Version Descriptions
|
||||
|
||||
**To modify a version description, do the following:**
|
||||
|
||||
* Expand the **INFO** area, hover over the **Description**, click <img src="/docs/latest/icons/ico-edit.svg" className="icon size-md space-sm" />,
|
||||
edit the name, and then click <img src="/docs/latest/icons/ico-save.svg" className="icon size-md space-sm" /> (check).
|
||||
|
||||
### Deleting versions
|
||||
### Deleting Versions
|
||||
|
||||
You can delete versions whose status is *Draft*.
|
||||
|
||||
|
@ -19,7 +19,7 @@ to a new position.
|
||||
* **CREATED** - Elapsed time since the Dataview was created.
|
||||
* **DESCRIPTION**
|
||||
|
||||
## Customizing the Dataviews table
|
||||
## Customizing the Dataviews Table
|
||||
|
||||
The Dataviews table can be customized. Changes are persistent (cached in the browser), and represented in the URL.
|
||||
Save customized settings in a browser bookmark, and share the URL with teammates.
|
||||
@ -43,7 +43,7 @@ all the Dataviews in the project. The customizations of these two views are save
|
||||
:::
|
||||
|
||||
|
||||
## Dataview actions
|
||||
## Dataview Actions
|
||||
|
||||
The following table describes the actions that can be performed from the Dataviews table.
|
||||
|
||||
@ -66,7 +66,7 @@ The same information can be found in the bottom menu, in a tooltip that appears
|
||||

|
||||
|
||||
|
||||
## Viewing, adding, and editing Dataviews
|
||||
## Viewing, Adding, and Editing Dataviews
|
||||
|
||||
**To view, add, or edit a Dataview:**
|
||||
|
||||
|
@ -5,7 +5,7 @@ title: Comparing Dataviews
|
||||
In addition to [**ClearML**'s comparison features](../../webapp/webapp_exp_comparing.md), the ClearML Enterprise WebApp
|
||||
provides a deep comparison of input data selection criteria of experiment Dataviews, enabling to easily locate, visualize, and analyze differences.
|
||||
|
||||
## Selecting experiments
|
||||
## Selecting Experiments
|
||||
|
||||
**To select experiments to compare:**
|
||||
|
||||
@ -14,7 +14,7 @@ provides a deep comparison of input data selection criteria of experiment Datavi
|
||||
1. In the bottom bar, click **COMPARE**. The comparison page appears, showing a column for each experiment and differences with
|
||||
a highlighted background color. The experiment on the left is the base experiment. Other experiments compare to the base experiment.
|
||||
|
||||
## Dataviews (input data)
|
||||
## Dataviews (Input Data)
|
||||
|
||||
**To locate the input data differences:**
|
||||
|
||||
|
@ -40,7 +40,7 @@ are iterated and frame filters (see [Dataviews](webapp_dataviews.md).
|
||||
After importing a Dataview, it can be renamed and / or removed.
|
||||
:::
|
||||
|
||||
### Selecting Dataset versions
|
||||
### Selecting Dataset Versions
|
||||
|
||||
To input data from a different data source or different version of a data source, select a different Dataset version used
|
||||
by the Dataview.
|
||||
@ -62,7 +62,7 @@ by the Dataview.
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Filtering frames
|
||||
## Filtering Frames
|
||||
|
||||
Filtering of SingleFrames iterated by a Dataview for input to the experiment is accomplished by frame filters.
|
||||
For more detailed information, see [Filtering](../dataviews.md#filtering).
|
||||
@ -85,7 +85,7 @@ For more detailed information, see [Filtering](../dataviews.md#filtering).
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Mapping labels (label translation)
|
||||
## Mapping Labels (Label Translation)
|
||||
|
||||
Modify the ROI label mapping rules, which translate one or more input labels to another label for the output model. Labels
|
||||
that are not mapped are ignored.
|
||||
@ -105,7 +105,7 @@ that are not mapped are ignored.
|
||||
|
||||
1. Click **SAVE**
|
||||
|
||||
## Label enumeration
|
||||
## Label Enumeration
|
||||
|
||||
Modify the label enumeration assigned to output models.
|
||||
|
||||
@ -121,7 +121,7 @@ Modify the label enumeration assigned to output models.
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Data augmentation
|
||||
## Data Augmentation
|
||||
|
||||
Modify the on-the-fly data augmentation applied to frames input from the select Dataset versions and filtered by the frame filters. Data augmentation is applied in steps, where each step applies a method, operation, and strength.
|
||||
|
||||
@ -137,7 +137,7 @@ For more detailed information, see [Data Augmentation](../dataviews.md#data-augm
|
||||
|
||||
1. Click **SAVE**.
|
||||
|
||||
## Iteration controls
|
||||
## Iteration Controls
|
||||
|
||||
Modify the frame iteration performed by the Dataview to control the order, number, timing, and reproducibility of frames
|
||||
for training.
|
||||
|
@ -8,7 +8,7 @@ Enterprise WebApp (UI).
|
||||
In addition to all of **ClearML**'s offerings, ClearML Enterprise keeps track of the Dataviews associated with an
|
||||
experiment, which can be viewed and [modified](webapp_exp_modifying.md) in the WebApp.
|
||||
|
||||
## Viewing an experiment's Dataviews
|
||||
## Viewing an Experiment's Dataviews
|
||||
|
||||
In an experiment's page, go to the **DATAVIEWS** tab to view all the experiment's Dataview details, including:
|
||||
* Input data [selection](#dataset-versions) and [filtering](#filtering)
|
||||
@ -48,7 +48,7 @@ ROI label mapping (label translation) applies to the new model. For example, use
|
||||
|
||||
For detailed information, see [Mapping ROI labels](../dataviews.md#mapping-roi-labels).
|
||||
|
||||
### Label enumeration
|
||||
### Label Enumeration
|
||||
|
||||
Assign label enumeration in the **LABELS ENUMERATION** area.
|
||||
|
||||
@ -59,7 +59,7 @@ where each step is composed of a method, an operation, and a strength.
|
||||
|
||||
For detailed information, see [Data augmentation](../dataviews.md#data-augmentation).
|
||||
|
||||
### Iteration control
|
||||
### Iteration Control
|
||||
|
||||
The input data iteration control settings determine the order, number, timing, and reproducibility of the Dataview iterating
|
||||
SingleFrames. Depending upon the combination of iteration control settings, all SingleFrames may not be iterated, and some may repeat.
|
||||
|
@ -252,7 +252,7 @@ title: Version 0.17
|
||||
* Fix experiment / model table - name column restores to default size after opening and closing info.
|
||||
* Fix double click resizer should auto fit column.
|
||||
|
||||
### ClearML Hosted Service only
|
||||
### ClearML Hosted Service Only
|
||||
|
||||
* Launched free [ClearML Hosted Service](https://app.community.clear.ml/dashboard).
|
||||
* Multiple workspaces.
|
||||
|
@ -25,7 +25,7 @@ The **ClearML Web UI** provides a deep experiment comparison, allowing to locate
|
||||
|
||||
The **ClearML** experiment comparison provides [comparison features](#comparison-features) making it easy to compare experiments.
|
||||
|
||||
## Selecting experiments to compare
|
||||
## Selecting Experiments to Compare
|
||||
|
||||
**To select experiments to compare:**
|
||||
|
||||
@ -45,7 +45,7 @@ The **DETAILS** tab includes deep comparisons of the following:
|
||||
* Output model and model design.
|
||||
* Other artifacts, if any.
|
||||
|
||||
### Execution details
|
||||
### Execution Details
|
||||
* The Source code - repository, branch, commit ID, script file name, and working directory.
|
||||
* Uncommitted changes, sorted by file name.
|
||||
* Installed Python packages and versions, sorted by package name.
|
||||
@ -55,7 +55,7 @@ The **DETAILS** tab includes deep comparisons of the following:
|
||||
sorted by sections.
|
||||
|
||||
|
||||
### To locate the source differences:
|
||||
### To Locate the Source Differences:
|
||||
|
||||
* Click the **DETAILS** tab **>** Expand highlighted sections, or, in the header, click <img src="/docs/latest/icons/ico-previous-diff.svg" alt="Previous diff" className="icon size-md" />
|
||||
(Previous diff) or <img src="/docs/latest/icons/ico-next-diff.svg" alt="next difference" className="icon size-md space-sm" /> (Next diff).
|
||||
@ -71,7 +71,7 @@ and name are different.
|
||||
|
||||
Compare hyperparameters as values, or compare by metric (hyperparameter parallel coordinate comparison).
|
||||
|
||||
### Values mode
|
||||
### Values Mode
|
||||
|
||||
The Values mode is a side-by-side comparison that shows hyperparameter value differences highlighted line-by-line.
|
||||
|
||||
@ -89,7 +89,7 @@ For example, expanding **General** shows that the `batch_size` and `epochs` diff
|
||||
|
||||

|
||||
|
||||
### Parallel Coordinates mode
|
||||
### Parallel Coordinates Mode
|
||||
|
||||
In the Parallel Coordinates mode, compare a metric to any combination of hyperparameters using a parallel coordinates plot.
|
||||
|
||||
@ -120,7 +120,7 @@ Hover over one of the experiment names in the legend, and the plot shows only th
|
||||
|
||||
Visualize the comparison of scalars, which includes metrics and monitored resources in the **SCALARS** tab.
|
||||
|
||||
### Compare specific values
|
||||
### Compare Specific Values
|
||||
|
||||
**To compare specific values:**
|
||||
|
||||
@ -133,7 +133,7 @@ Visualize the comparison of scalars, which includes metrics and monitored resour
|
||||
|
||||

|
||||
|
||||
### Compare scalar series
|
||||
### Compare Scalar Series
|
||||
|
||||
Compare scalar series in plots and analyze differences using **ClearML Web UI** plot tools.
|
||||
|
||||
@ -187,7 +187,7 @@ in the **PLOTS** tab.
|
||||
|
||||
|
||||
|
||||
## Debug samples
|
||||
## Debug Samples
|
||||
|
||||
Compare debug samples at any iteration to verify that an experiment is running as expected. The most recent iteration appears
|
||||
first. Use the viewer / player to inspect images, audio, video samples and do any of the following:
|
||||
@ -226,7 +226,7 @@ first. Use the viewer / player to inspect images, audio, video samples and do an
|
||||
* Zoom
|
||||
* For images, locate a position on the sample - Hover over the sample and the X, Y coordinates appear in the legend below the sample.
|
||||
|
||||
## Comparison features
|
||||
## Comparison Features
|
||||
|
||||
To assist in experiment analysis, the comparison page supports:
|
||||
|
||||
@ -241,7 +241,7 @@ To assist in experiment analysis, the comparison page supports:
|
||||
|
||||
|
||||
|
||||
### Adding experiments to the comparison
|
||||
### Adding Experiments to the Comparison
|
||||
|
||||
Add an experiment to the comparison - Click **Add Experiment** and start typing an experiment name. An experiment search
|
||||
and select dialog appears showing matching experiments to choose from. To add an experiment, click **+**. To Remove
|
||||
@ -251,26 +251,26 @@ an experiment, click <img src="/docs/latest/icons/ico-trash.svg" alt="Trash" cla
|
||||
|
||||
|
||||
|
||||
### Finding the next or previous difference
|
||||
### Finding the Next or Previous Difference
|
||||
|
||||
* Find the previous difference <img src="/docs/latest/icons/ico-previous-diff.svg" className="icon size-md space-sm" />, or
|
||||
the next difference <img src="/docs/latest/icons/ico-next-diff.svg" className="icon size-md space-sm" />.
|
||||
|
||||
|
||||
|
||||
### Hiding identical fields
|
||||
### Hiding Identical Fields
|
||||
|
||||
Move the **Hide Identical Fields** slider to "on" mode to see only fields that are different.
|
||||
|
||||
|
||||
|
||||
### Searching all text
|
||||
### Searching All Text
|
||||
|
||||
Search all text in the comparison.
|
||||
|
||||
|
||||
|
||||
### Choosing a different base experiment
|
||||
### Choosing a Different Base Experiment
|
||||
|
||||
Show differences in other experiments in reference to a new base experiment. To set a new base experiment, do one of the following:
|
||||
* Click on <img src="/docs/latest/icons/ico-switch-base.svg" className="icon size-md space-sm" /> on the top right of the experiment that will be the new base.
|
||||
@ -280,20 +280,20 @@ Show differences in other experiments in reference to a new base experiment. To
|
||||
|
||||
|
||||
|
||||
### Dynamic ordering of the compared experiments
|
||||
### Dynamic Ordering of the Compared Experiments
|
||||
|
||||
To reorder the experiments being compared, press <img src="/docs/latest/icons/ico-pan.svg" className="icon size-md space-sm" /> on the top right of the experiment that
|
||||
needs to be moved, and drag the experiment to its new position.
|
||||
|
||||

|
||||
|
||||
### Removing an experiment from the comparison
|
||||
### Removing an Experiment from the Comparison
|
||||
Remove an experiment from the comparison, by pressing <img src="/docs/latest/icons/ico-remove-compare.svg" className="icon size-md space-sm" />
|
||||
on the top right of the experiment that needs to be removed.
|
||||
|
||||

|
||||
|
||||
### Sharing experiments
|
||||
### Sharing Experiments
|
||||
|
||||
To share a comparison table, copy the full URL from the address bar and send it to a teammate to collaborate. They will
|
||||
get the exact same page (including selected tabs etc.).
|
||||
|
@ -14,7 +14,7 @@ them.
|
||||
When a user opens the hyperlink for a shared experiment in their browser, only that experiment appears in the experiment table.
|
||||
:::
|
||||
|
||||
## Sharing experiments
|
||||
## Sharing Experiments
|
||||
|
||||
Share experiments from the experiments table, the info panel menu, and/or the full screen details menu.
|
||||
|
||||
@ -30,7 +30,7 @@ Share experiments from the experiments table, the info panel menu, and/or the fu
|
||||
|
||||
1. Copy the hyperlink and send it to a **ClearML Hosted Service** user of another workspace.
|
||||
|
||||
## Making shared experiment private
|
||||
## Making Shared Experiment Private
|
||||
|
||||
**To make a shared experiment private again:**
|
||||
|
||||
|
@ -14,7 +14,7 @@ including:
|
||||
* [Plots](#other-plots) - Other plots and data, for example: Matplotlib, Plotly, and **ClearML** explicit reporting.
|
||||
* [Debug samples](#debug-samples) - Images, audio, video, and HTML.
|
||||
|
||||
## Viewing modes
|
||||
## Viewing Modes
|
||||
|
||||
The **ClearML Web UI** provides two viewing modes for experiment details:
|
||||
|
||||
@ -27,7 +27,7 @@ Both modes contain all experiment details. When either view is open, switch to t
|
||||
table / full screen**.
|
||||
|
||||
|
||||
### Info panel
|
||||
### Info Panel
|
||||
|
||||
The info panel keeps the experiment table in view so that [experiment actions](webapp_exp_table#clearml-actions-from-the-experiments-table)
|
||||
can be performed from the table (as well as the menu in the info panel).
|
||||
@ -41,7 +41,7 @@ can be performed from the table (as well as the menu in the info panel).
|
||||
</div>
|
||||
</details>
|
||||
|
||||
### Full screen details view
|
||||
### Full Screen Details View
|
||||
|
||||
The full screen details view allows for easier viewing and working with experiment tracking and results. The experiments
|
||||
table is not visible when the full screen details view is open. Perform experiment actions from the menu.
|
||||
@ -56,7 +56,7 @@ table is not visible when the full screen details view is open. Perform experime
|
||||
</details>
|
||||
|
||||
|
||||
## Execution details
|
||||
## Execution Details
|
||||
In the EXECUTION tab of an experiment's detail page, there are records of:
|
||||
* Source code
|
||||
* **ClearML Agent** configuration
|
||||
@ -65,7 +65,7 @@ In the EXECUTION tab of an experiment's detail page, there are records of:
|
||||
* Installed Python packages
|
||||
|
||||
|
||||
### Source code, ClearML Agent configuration, and output details
|
||||
### Source Code, ClearML Agent Configuration, and Output Details
|
||||
|
||||
The source code details of the EXECUTION tab of an experiment include:
|
||||
* The experiment's repository
|
||||
@ -94,7 +94,7 @@ The output details include:
|
||||
</details>
|
||||
|
||||
|
||||
### Uncommitted changes
|
||||
### Uncommitted Changes
|
||||
|
||||
<details className="cml-expansion-panel screenshot">
|
||||
<summary className="cml-expansion-panel-summary">View a screenshot</summary>
|
||||
@ -106,7 +106,7 @@ The output details include:
|
||||
</details>
|
||||
|
||||
|
||||
### Installed Python packages and their versions
|
||||
### Installed Python packages and Their Versions
|
||||
<details className="cml-expansion-panel screenshot">
|
||||
<summary className="cml-expansion-panel-summary">View a screenshot</summary>
|
||||
<div className="cml-expansion-panel-content">
|
||||
@ -129,7 +129,7 @@ In older versions of **ClearML Server**, the **CONFIGURATION** tab was named **H
|
||||
|
||||
Hyperparameters are grouped by their type and appear in **CONFIGURATION** **>** **HYPER PARAMETERS**.
|
||||
|
||||
#### Command line arguments
|
||||
#### Command Line Arguments
|
||||
|
||||
The **Args** parameter group shows automatically logged `argparse` arguments, and all older experiments parameters, except TensorFlow Definitions. Hover over a parameter, and the type, description, and default value appear, if they were provided.
|
||||
|
||||
@ -143,7 +143,7 @@ The **Args** parameter group shows automatically logged `argparse` arguments, an
|
||||
</details>
|
||||
|
||||
|
||||
#### Environment variables
|
||||
#### Environment Variables
|
||||
|
||||
If the `CLEARML_LOG_ENVIRONMENT` variable was set, the **Environment** group will show environment variables (see [this FAQ](../faq#track-env-vars)).
|
||||
|
||||
@ -157,7 +157,7 @@ If the `CLEARML_LOG_ENVIRONMENT` variable was set, the **Environment** group wil
|
||||
</details>
|
||||
|
||||
|
||||
#### Custom parameter groups
|
||||
#### Custom Parameter Groups
|
||||
|
||||
Custom parameter groups show parameter dictionaries if the parameters were connected to the Task, using the `Task.connect` method,
|
||||
with a `name` argument provided.
|
||||
@ -186,7 +186,7 @@ The **TF_DEFINE** parameter group shows automatic TensorFlow logging.
|
||||
|
||||
Once an experiment is run and stored in **ClearML Server**, any of these hyperparameters can be [modified](webapp_exp_tuning.md#modifying-experiments).
|
||||
|
||||
### User properties
|
||||
### User Properties
|
||||
|
||||
User properties allow to store any descriptive information in a key-value pair format. They are editable in any experiment,
|
||||
except experiments whose status is *Published* (read-only).
|
||||
@ -201,7 +201,7 @@ except experiments whose status is *Published* (read-only).
|
||||
</details>
|
||||
|
||||
|
||||
### Configuration objects
|
||||
### Configuration Objects
|
||||
|
||||
**ClearML** tracks experiment (Task) model configuration objects, which appear in **Configuration Objects** **>** **General**.
|
||||
These objects include those that are automatically tracked, and those connected to a Task in code (see [Task.connect_configuration](../references/sdk/task.md#connect_configuration)).
|
||||
@ -266,7 +266,7 @@ including design, label enumeration, and general information, go to the **MODELS
|
||||
</details>
|
||||
|
||||
|
||||
### Other artifacts
|
||||
### Other Artifacts
|
||||
|
||||
**To retrieve another artifact:**
|
||||
|
||||
@ -276,7 +276,7 @@ including design, label enumeration, and general information, go to the **MODELS
|
||||
* Copy its location to the clipboard <img src="/docs/latest/icons/ico-clipboard.svg" alt="Copy Clipboard" className="icon size-md space-sm" />,
|
||||
if it is in a local file.
|
||||
|
||||
#### Data audit
|
||||
#### Data Audit
|
||||
|
||||
Artifacts which are uploaded and dynamically tracked by **ClearML** appear in the **DATA AUDIT** section. They include the file path, file size, hash, and metadata stored with the artifact.
|
||||
|
||||
@ -306,7 +306,7 @@ Other artifacts, which are uploaded but not dynamically tracked after the upload
|
||||
|
||||
|
||||
|
||||
## General information
|
||||
## General Information
|
||||
|
||||
General experiment details appear in the **INFO** tab. This includes information describing the stored experiment:
|
||||
* The parent experiment
|
||||
@ -339,7 +339,7 @@ General experiment details appear in the **INFO** tab. This includes information
|
||||
|
||||
|
||||
|
||||
## Experiment results
|
||||
## Experiment Results
|
||||
|
||||
|
||||
|
||||
@ -364,7 +364,7 @@ is downloadable. To view the end of the log, click **Jump to end**.
|
||||
|
||||
All scalars that **ClearML** automatically logs, as well as those explicitly reported in code, appear in **RESULTS** **>** **SCALARS**.
|
||||
|
||||
#### Scalar plot tools
|
||||
#### Scalar Plot Tools
|
||||
|
||||
Use the scalar tools to improve analysis of scalar metrics. In the info panel, click <img src="/docs/latest/icons/ico-settings.svg" className="icon size-md space-sm" /> to use the tools. In the full screen details view, the tools
|
||||
are on the left side of the window. The tools include:
|
||||
@ -417,7 +417,7 @@ Individual plots can be shown / hidden or filtered by title.
|
||||
</details>
|
||||
|
||||
|
||||
#### Plot controls
|
||||
#### Plot Controls
|
||||
|
||||
The table below lists the plot controls which may be available for any plot (in the **SCALARS** and **PLOTS** tabs).
|
||||
These controls allow you to better analyze the results. Hover over a plot, and the controls appear.
|
||||
@ -441,7 +441,7 @@ These controls allow you to better analyze the results. Hover over a plot, and t
|
||||
| <img src="/docs/latest/icons/ico-download-json.svg" alt="Download JSON icon" className="icon size-sm space-sm" /> | To get metric data for further analysis, download plot data to JSON file. |
|
||||
| <img src="/docs/latest/icons/ico-maximize.svg" alt="Maximize plot icon" className="icon size-sm space-sm" /> | Expand plot to entire window. |
|
||||
|
||||
#### 3D plot controls
|
||||
#### 3D Plot Controls
|
||||
|Icon|Description|
|
||||
|---|---|
|
||||
| <img src="/docs/latest/icons/ico-orbital-rotation.svg" alt="Orbital rotation mode icon" className="icon size-sm" />| Switch to orbital rotation mode - rotate the plot around its middle point. |
|
||||
@ -449,7 +449,7 @@ These controls allow you to better analyze the results. Hover over a plot, and t
|
||||
| <img src="/docs/latest/icons/ico-homepage.svg" alt="reset axes icon" className="icon size-sm" />| Reset axes to default position. |
|
||||
|
||||
|
||||
### Debug samples
|
||||
### Debug Samples
|
||||
|
||||
View debug samples by metric at any iteration. The most recent iteration appears first. Use the viewer / player to inspect images, audio, video samples and do any of the following:
|
||||
|
||||
@ -501,7 +501,7 @@ View debug samples by metric at any iteration. The most recent iteration appears
|
||||
* For images, locate a position on the sample - Hover over the sample and the X, Y coordinates appear in the legend below the sample.
|
||||
|
||||
|
||||
## Tagging experiments
|
||||
## Tagging Experiments
|
||||
|
||||
Tags are user-defined, color-coded labels that can be added to experiments (and models), allowing to easily identify and
|
||||
group experiments. Tags can show any text. For example, add tags for the type of remote machine experiments were executed
|
||||
@ -518,6 +518,6 @@ on, label versions of experiments, or apply team names to organize experimentati
|
||||
|
||||
|
||||
|
||||
## Locating the experiment (Task) ID
|
||||
## Locating the Experiment (Task) ID
|
||||
|
||||
* In the info panel, in the top area, to the right of the Task name, click **ID**. The Task ID appears.
|
||||
|
@ -4,7 +4,7 @@ title: Tuning experiments
|
||||
|
||||
Tune experiments and edit an experiment's execution details, then execute the tuned experiments on local or remote machines.
|
||||
|
||||
## To tune an experiment and execute it remotely:
|
||||
## To Tune an Experiment and Execute it Remotely:
|
||||
|
||||
1. Locate the experiment. Open the experiment's Project page from the Home page or the main Projects page.
|
||||
|
||||
@ -32,7 +32,7 @@ Tune experiments and edit an experiment's execution details, then execute the tu
|
||||
The experiment's status becomes *Pending*. When the worker assigned to the queue fetches the Task (experiment), the
|
||||
status becomes *Running*. The experiment can now be tracked and its results visualized.
|
||||
|
||||
## Modifying experiments
|
||||
## Modifying Experiments
|
||||
|
||||
Experiments whose status is *Draft* are editable (see the [user properties](#user-properties) exception). In the **ClearML
|
||||
Web UI**, edit any of the following
|
||||
@ -51,11 +51,11 @@ User parameters are editable in any experiment, except experiments whose status
|
||||
* [Initial weight input model](#initial-weights-input-model)
|
||||
* [Output destination for artifacts storage](#output-destination)
|
||||
|
||||
### Execution details
|
||||
### Execution Details
|
||||
|
||||
|
||||
|
||||
#### Source code
|
||||
#### Source Code
|
||||
|
||||
Select source code by changing any of the following:
|
||||
|
||||
@ -70,7 +70,7 @@ Select source code by changing any of the following:
|
||||
|
||||
|
||||
|
||||
#### Base Docker image
|
||||
#### Base Docker Image
|
||||
Select a pre-configured Docker that **ClearML Agent** will use to remotely execute this experiment (see [Building Docker containers](../clearml_agent.md#building-docker-containers)).
|
||||
|
||||
**To add, change, or delete a base Docker image:**
|
||||
@ -80,7 +80,7 @@ Select a pre-configured Docker that **ClearML Agent** will use to remotely execu
|
||||
|
||||
|
||||
|
||||
#### Output destination
|
||||
#### Output Destination
|
||||
|
||||
Set an output destination for model checkpoints (snapshots) and other artifacts. Examples of supported types of destinations
|
||||
and formats for specifying locations include:
|
||||
@ -102,7 +102,7 @@ method), and in the **ClearML** configuration file for all experiments (see [def
|
||||
on the **ClearML** Configuration Reference page).
|
||||
:::
|
||||
|
||||
#### Log level
|
||||
#### Log Level
|
||||
|
||||
Set a logging level for the experiment (see the standard Python [logging levels](https://docs.python.org/3/howto/logging.html#logging-levels)).
|
||||
|
||||
@ -142,7 +142,7 @@ Add, change, or delete hyperparameters, which are organized in the **ClearML Web
|
||||
|
||||
|
||||
|
||||
#### User properties
|
||||
#### User Properties
|
||||
|
||||
User properties allow storing any descriptive information in key-value pair format. They are editable in any experiment,
|
||||
except experiments whose status is *Published* (read-only).
|
||||
@ -154,7 +154,7 @@ except experiments whose status is *Published* (read-only).
|
||||
|
||||
|
||||
|
||||
#### Configuration objects
|
||||
#### Configuration Objects
|
||||
|
||||
:::important
|
||||
In older versions of **ClearML Server**, the Task model configuration appeared in the **ARTIFACTS** tab **>** **MODEL
|
||||
@ -168,7 +168,7 @@ CONFIGURATION** section. Task model configurations now appear in **CONFIGURATION
|
||||
|
||||
### Artifacts
|
||||
|
||||
### Initial weights input model
|
||||
### Initial Weights Input Model
|
||||
|
||||
Edit model configuration and label enumeration, choose a different initial input weight model for the same project or any
|
||||
other project, or remove the model.
|
||||
|
@ -7,7 +7,7 @@ view model details, and modify, publish, archive, tag, and move models to other
|
||||
|
||||

|
||||
|
||||
## Models table columns
|
||||
## Models Table Columns
|
||||
|
||||
The models table contains the following columns:
|
||||
|
||||
@ -25,7 +25,7 @@ The models table contains the following columns:
|
||||
|
||||
|
||||
|
||||
## Customizing the models table
|
||||
## Customizing the Models Table
|
||||
|
||||
The models table is customizable. Changes are persistent (cached in the browser) and represented in the URL, so customized settings
|
||||
can be saved in a browser bookmark and shared with other **ClearML** users to collaborate.
|
||||
@ -51,7 +51,7 @@ If a project has sub-projects, the models can be viewed by their sub-project gro
|
||||
all the models in the project. The customizations of these two views are saved separately.
|
||||
:::
|
||||
|
||||
## Model actions
|
||||
## Model Actions
|
||||
|
||||
The following table describes the actions that can be done from the models table, including the states that
|
||||
allow each feature. Model states are *Draft* (editable) and *Published* (read-only).
|
||||
@ -75,7 +75,7 @@ The same information can be found in the bottom menu, in a tooltip that appears
|
||||
|
||||

|
||||
|
||||
## Tagging models
|
||||
## Tagging Models
|
||||
|
||||
Tags are user-defined, color-coded labels that can be added to models (and experiments), allowing to easily identify and
|
||||
group of experiments. A tag can show any text, for any purpose. For example, add tags for the type of remote machine
|
||||
|
@ -9,7 +9,7 @@ meaning that it's the first thing that is seen when opening the project.
|
||||
|
||||

|
||||
|
||||
## Metric snapshot
|
||||
## Metric Snapshot
|
||||
|
||||
On the top of the **OVERVIEW** tab, there is an option to display a **metric snapshot**. Choose a metric and variant,
|
||||
and then the window will present an aggregated view of the value for that metric and the time that each
|
||||
@ -20,14 +20,14 @@ on their status (`Completed`, `Aborted`, `Published`, or `Failed`). Hover over a
|
||||
appear with the details of the experiment associated with the metric value. Click the point, and you will
|
||||
be sent to the experiment's page.
|
||||
|
||||
## Project description
|
||||
## Project Description
|
||||
|
||||
Every project has a `description` field. The UI provides a Markdown editor to edit this field.
|
||||
|
||||
In the Markdown document, you can write and share reports and add links to **ClearML** experiments
|
||||
or any network resource such as issue tracker, web repository, etc.
|
||||
|
||||
### Editing the description
|
||||
### Editing the Description
|
||||
|
||||
To edit the description in the **OVERVIEW** tab, hover over the description section, and press the **EDIT** button that
|
||||
appears on the top right of the window.
|
||||
|
Loading…
Reference in New Issue
Block a user