mirror of
https://github.com/clearml/clearml-docs
synced 2025-06-26 18:17:44 +00:00
Change headings to title caps (#62)
This commit is contained in:
@@ -7,7 +7,7 @@ example script demonstrates hyperparameter optimization, which is automated by u
|
||||
|
||||
<a class="tr_top_negative" name="strategy"></a>
|
||||
|
||||
## Set the search strategy for optimization
|
||||
## Set the Search Strategy for Optimization
|
||||
|
||||
A search strategy is required for the optimization, as well as a search strategy optimizer class to implement that strategy.
|
||||
|
||||
@@ -57,7 +57,7 @@ the `RandomSearch` for the search strategy.
|
||||
'we will be using RandomSearch strategy instead')
|
||||
aSearchStrategy = RandomSearch
|
||||
|
||||
## Define a callback
|
||||
## Define a Callback
|
||||
|
||||
When the optimization starts, a callback is provided that returns the best performing set of hyperparameters. In the script,
|
||||
the `job_complete_callback` function returns the ID of `top_performance_job_id`.
|
||||
@@ -73,7 +73,7 @@ the `job_complete_callback` function returns the ID of `top_performance_job_id`.
|
||||
if job_id == top_performance_job_id:
|
||||
print('WOOT WOOT we broke the record! Objective reached {}'.format(objective_value))
|
||||
|
||||
## Initialize the optimization Task
|
||||
## Initialize the Optimization Task
|
||||
|
||||
Initialize the Task, which will be stored in **ClearML Server** when the code runs. After the code runs at least once, it
|
||||
can be [reproduced](../../../webapp/webapp_exp_reproducing.md) and [tuned](../../../webapp/webapp_exp_tuning.md).
|
||||
@@ -89,7 +89,7 @@ the project **Hyper-Parameter Optimization**, which can be seen in the **ClearML
|
||||
task_type=Task.TaskTypes.optimizer,
|
||||
reuse_last_task_id=False)
|
||||
|
||||
## Set up the arguments
|
||||
## Set Up the Arguments
|
||||
|
||||
Create an arguments dictionary that contains the ID of the Task to optimize, and a Boolean indicating whether the
|
||||
optimizer will run as a service, see [Running as a service](#running-as-a-service).
|
||||
@@ -112,7 +112,7 @@ to optimize a different experiment, see [tuning experiments](../../../webapp/web
|
||||
args['template_task_id'] = Task.get_task(
|
||||
project_name='examples', task_name='Keras HP optimization base').id
|
||||
|
||||
## Instantiate the optimizer object
|
||||
## Instantiate the Optimizer Object
|
||||
|
||||
Instantiate an [automation.optimization.HyperParameterOptimizer](../../../references/sdk/hpo_optimization_hyperparameteroptimizer.md)
|
||||
object, setting the optimization parameters, beginning with the ID of the experiment to optimize.
|
||||
@@ -170,7 +170,7 @@ Specify the remaining parameters, including the time limit per Task (minutes), p
|
||||
|
||||
<a class="tr_top_negative" name="service"></a>
|
||||
|
||||
## Running as a service
|
||||
## Running as a Service
|
||||
|
||||
The optimization can run as a service, if the `run_as_service` argument is set to `true`. For more information about
|
||||
running as a service, see [ClearML Agent services container](../../../clearml_agent.md#services-mode)
|
||||
|
||||
Reference in New Issue
Block a user