mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-03 21:04:46 +00:00
Small edits (#671)
This commit is contained in:
parent
6a9f3adb4d
commit
b171d597fc
@ -29,8 +29,8 @@ of the optimization results in table and graph forms.
|
||||
|`--task-id`|ID of a ClearML task whose hyperparameters will be optimized. Required unless `--script` is specified.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--script`|Script to run the parameter search on. Required unless `--task-id` is specified.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--queue`|Queue to enqueue the experiments on.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--params-search`|Parameters space for optimization. See more information [here](#specifying-the-parameter-space). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|
||||
|`--params-override`|Additional parameters of the base task to override for this parameter search. Use the following JSON format for each parameter: `{"name": "param_name", "value": <new_value>}`. Windows users, see JSON format note [here](#json_note).|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--params-search`|Parameters space for optimization. See more information in [Specifying the Parameter Space](#specifying-the-parameter-space). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|
||||
|`--params-override`|Additional parameters of the base task to override for this parameter search. Use the following JSON format for each parameter: `{"name": "param_name", "value": <new_value>}`. Windows users, see [JSON format note](#json_note).|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--objective-metric-title`| Objective metric title to maximize/minimize (e.g. 'validation').|<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|
||||
|`--objective-metric-series`| Objective metric series to maximize/minimize (e.g. 'loss').|<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|
||||
|`--objective-metric-sign`| Optimization target, whether to maximize or minimize the value of the objective metric specified. Possible values: "min", "max", "min_global", "max_global". See more information [here](#optimization-objective). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|
||||
|
@ -349,7 +349,7 @@ ClearML Agent supports executing tasks in multiple environments.
|
||||
### PIP Mode
|
||||
By default, ClearML Agent works in PIP Mode, in which it uses [pip](https://en.wikipedia.org/wiki/Pip_(package_manager))
|
||||
as the package manager. When ClearML runs, it will create a virtual environment
|
||||
(or reuse an existing one, see [here](clearml_agent.md#virtual-environment-reuse)).
|
||||
(or [reuse an existing one](clearml_agent.md#virtual-environment-reuse)).
|
||||
Task dependencies (Python packages) will be installed in the virtual environment.
|
||||
|
||||
### Conda Mode
|
||||
|
@ -15,9 +15,9 @@ The following page provides a reference to `clearml-agent`'s CLI commands:
|
||||
Use the `build` command to create worker environments without executing tasks.
|
||||
|
||||
You can build Docker containers according to the execution environments of specific tasks, which an agent can later
|
||||
use to execute other tasks. See tutorial [here](../guides/clearml_agent/exp_environment_containers.md).
|
||||
use to execute other tasks. See [tutorial](../guides/clearml_agent/exp_environment_containers.md).
|
||||
|
||||
You can also create a Docker container that executes a specific task when launched. See tutorial [here](../guides/clearml_agent/executable_exp_containers.md).
|
||||
You can also create a Docker container that executes a specific task when launched. See [tutorial](../guides/clearml_agent/executable_exp_containers.md).
|
||||
|
||||
```bash
|
||||
clearml-agent build [-h] --id TASK_ID [--target TARGET]
|
||||
|
@ -93,7 +93,7 @@ See an [overview](apiclient_sdk.md) for APIClient usage.
|
||||
Use the ClearmlJob to create and manage jobs based on existing tasks. The class supports changing a job's parameters,
|
||||
configurations, and other execution details.
|
||||
|
||||
See reference page [here](../references/sdk/automation_job_clearmljob.md).
|
||||
See [reference page](../references/sdk/automation_job_clearmljob.md).
|
||||
|
||||
### AutoScaler
|
||||
The `AutoScaler` class facilitates implementing resource budgeting. See class methods [here](https://github.com/allegroai/clearml/blob/master/clearml/automation/auto_scaler.py).
|
||||
|
@ -1,4 +1,4 @@
|
||||
--
|
||||
---
|
||||
title: FAQ
|
||||
---
|
||||
|
||||
|
@ -32,8 +32,11 @@ By doubling clicking a thumbnail, you can view a spectrogram plot in the image v
|
||||
ClearML automatically logs TensorFlow Definitions. A parameter dictionary is logged by connecting it to the Task using
|
||||
[`Task.connect()`](../../../../../references/sdk/task.md#connect).
|
||||
|
||||
configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}
|
||||
configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml
|
||||
```python
|
||||
configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}
|
||||
# enabling configuration override by clearml
|
||||
configuration_dict = task.connect(configuration_dict)
|
||||
```
|
||||
|
||||
Parameter dictionaries appear in **CONFIGURATION** **>** **HYPERPARAMETERS** **>** **General**.
|
||||
|
||||
|
@ -28,7 +28,7 @@ For example, the raw data is read into a Pandas DataFrame named `train_set`, and
|
||||
```python
|
||||
train_set = pd.read_csv(Path(path_to_ShelterAnimal) / 'train.csv')
|
||||
Logger.current_logger().report_table(
|
||||
title='ClearMLet - raw',series='pandas DataFrame',iteration=0, table_plot=train_set.head()
|
||||
title='ClearMLet - raw', series='pandas DataFrame', iteration=0, table_plot=train_set.head()
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -26,8 +26,10 @@ The script does the following:
|
||||
The example uploads a dictionary as an artifact in the main Task by calling [`Task.upload_artifact()`](../../../references/sdk/task.md#upload_artifact)
|
||||
on `Task.current_task` (the main Task). The dictionary contains the `dist.rank` of the subprocess, making each unique.
|
||||
|
||||
Task.current_task().upload_artifact(
|
||||
'temp {:02d}'.format(dist.get_rank()), artifact_object={'worker_rank': dist.get_rank()})
|
||||
```python
|
||||
Task.current_task().upload_artifact(
|
||||
'temp {:02d}'.format(dist.get_rank()), artifact_object={'worker_rank': dist.get_rank()})
|
||||
```
|
||||
|
||||
All of these artifacts appear in the main Task, **ARTIFACTS** **>** **OTHER**.
|
||||
|
||||
@ -39,8 +41,10 @@ Report loss to the main Task by calling [`Logger.report_scalar()`](../../../refe
|
||||
on `Task.current_task().get_logger`, which is the logger for the main Task. Since `Logger.report_scalar` is called with the
|
||||
same title (`loss`), but a different series name (containing the subprocess' `rank`), all loss scalar series are logged together.
|
||||
|
||||
Task.current_task().get_logger().report_scalar(
|
||||
'loss', 'worker {:02d}'.format(dist.get_rank()), value=loss.item(), iteration=i)
|
||||
```python
|
||||
Task.current_task().get_logger().report_scalar(
|
||||
'loss', 'worker {:02d}'.format(dist.get_rank()), value=loss.item(), iteration=i)
|
||||
```
|
||||
|
||||
The single scalar plot for loss appears in **SCALARS**.
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: Images Reporting
|
||||
title: Image Reporting
|
||||
---
|
||||
|
||||
The [image_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/image_reporting.py) example
|
||||
|
Loading…
Reference in New Issue
Block a user