Small edits (#671)

This commit is contained in:
pollfly 2023-09-18 10:49:13 +03:00 committed by GitHub
parent 6a9f3adb4d
commit b171d597fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 22 additions and 15 deletions

View File

@ -29,8 +29,8 @@ of the optimization results in table and graph forms.
|`--task-id`|ID of a ClearML task whose hyperparameters will be optimized. Required unless `--script` is specified.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|`--script`|Script to run the parameter search on. Required unless `--task-id` is specified.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|`--queue`|Queue to enqueue the experiments on.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|`--params-search`|Parameters space for optimization. See more information [here](#specifying-the-parameter-space). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|`--params-override`|Additional parameters of the base task to override for this parameter search. Use the following JSON format for each parameter: `{"name": "param_name", "value": <new_value>}`. Windows users, see JSON format note [here](#json_note).|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|`--params-search`|Parameters space for optimization. See more information in [Specifying the Parameter Space](#specifying-the-parameter-space). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|`--params-override`|Additional parameters of the base task to override for this parameter search. Use the following JSON format for each parameter: `{"name": "param_name", "value": <new_value>}`. Windows users, see [JSON format note](#json_note).|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|`--objective-metric-title`| Objective metric title to maximize/minimize (e.g. 'validation').|<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|`--objective-metric-series`| Objective metric series to maximize/minimize (e.g. 'loss').|<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|
|`--objective-metric-sign`| Optimization target, whether to maximize or minimize the value of the objective metric specified. Possible values: "min", "max", "min_global", "max_global". See more information [here](#optimization-objective). |<img src="/docs/latest/icons/ico-optional-no.svg" alt="No" className="icon size-md center-md" />|

View File

@ -349,7 +349,7 @@ ClearML Agent supports executing tasks in multiple environments.
### PIP Mode
By default, ClearML Agent works in PIP Mode, in which it uses [pip](https://en.wikipedia.org/wiki/Pip_(package_manager))
as the package manager. When ClearML runs, it will create a virtual environment
(or reuse an existing one, see [here](clearml_agent.md#virtual-environment-reuse)).
(or [reuse an existing one](clearml_agent.md#virtual-environment-reuse)).
Task dependencies (Python packages) will be installed in the virtual environment.
### Conda Mode

View File

@ -15,9 +15,9 @@ The following page provides a reference to `clearml-agent`'s CLI commands:
Use the `build` command to create worker environments without executing tasks.
You can build Docker containers according to the execution environments of specific tasks, which an agent can later
use to execute other tasks. See tutorial [here](../guides/clearml_agent/exp_environment_containers.md).
use to execute other tasks. See [tutorial](../guides/clearml_agent/exp_environment_containers.md).
You can also create a Docker container that executes a specific task when launched. See tutorial [here](../guides/clearml_agent/executable_exp_containers.md).
You can also create a Docker container that executes a specific task when launched. See [tutorial](../guides/clearml_agent/executable_exp_containers.md).
```bash
clearml-agent build [-h] --id TASK_ID [--target TARGET]

View File

@ -93,7 +93,7 @@ See an [overview](apiclient_sdk.md) for APIClient usage.
Use the ClearmlJob to create and manage jobs based on existing tasks. The class supports changing a job's parameters,
configurations, and other execution details.
See reference page [here](../references/sdk/automation_job_clearmljob.md).
See [reference page](../references/sdk/automation_job_clearmljob.md).
### AutoScaler
The `AutoScaler` class facilitates implementing resource budgeting. See class methods [here](https://github.com/allegroai/clearml/blob/master/clearml/automation/auto_scaler.py).

View File

@ -1,4 +1,4 @@
--
---
title: FAQ
---

View File

@ -32,8 +32,11 @@ By doubling clicking a thumbnail, you can view a spectrogram plot in the image v
ClearML automatically logs TensorFlow Definitions. A parameter dictionary is logged by connecting it to the Task using
[`Task.connect()`](../../../../../references/sdk/task.md#connect).
configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}
configuration_dict = task.connect(configuration_dict) # enabling configuration override by clearml
```python
configuration_dict = {'number_of_epochs': 3, 'batch_size': 4, 'dropout': 0.25, 'base_lr': 0.001}
# enabling configuration override by clearml
configuration_dict = task.connect(configuration_dict)
```
Parameter dictionaries appear in **CONFIGURATION** **>** **HYPERPARAMETERS** **>** **General**.

View File

@ -28,7 +28,7 @@ For example, the raw data is read into a Pandas DataFrame named `train_set`, and
```python
train_set = pd.read_csv(Path(path_to_ShelterAnimal) / 'train.csv')
Logger.current_logger().report_table(
title='ClearMLet - raw',series='pandas DataFrame',iteration=0, table_plot=train_set.head()
title='ClearMLet - raw', series='pandas DataFrame', iteration=0, table_plot=train_set.head()
)
```

View File

@ -26,8 +26,10 @@ The script does the following:
The example uploads a dictionary as an artifact in the main Task by calling [`Task.upload_artifact()`](../../../references/sdk/task.md#upload_artifact)
on `Task.current_task` (the main Task). The dictionary contains the `dist.rank` of the subprocess, making each unique.
Task.current_task().upload_artifact(
'temp {:02d}'.format(dist.get_rank()), artifact_object={'worker_rank': dist.get_rank()})
```python
Task.current_task().upload_artifact(
'temp {:02d}'.format(dist.get_rank()), artifact_object={'worker_rank': dist.get_rank()})
```
All of these artifacts appear in the main Task, **ARTIFACTS** **>** **OTHER**.
@ -39,8 +41,10 @@ Report loss to the main Task by calling [`Logger.report_scalar()`](../../../refe
on `Task.current_task().get_logger`, which is the logger for the main Task. Since `Logger.report_scalar` is called with the
same title (`loss`), but a different series name (containing the subprocess' `rank`), all loss scalar series are logged together.
Task.current_task().get_logger().report_scalar(
'loss', 'worker {:02d}'.format(dist.get_rank()), value=loss.item(), iteration=i)
```python
Task.current_task().get_logger().report_scalar(
'loss', 'worker {:02d}'.format(dist.get_rank()), value=loss.item(), iteration=i)
```
The single scalar plot for loss appears in **SCALARS**.

View File

@ -1,5 +1,5 @@
---
title: Images Reporting
title: Image Reporting
---
The [image_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/image_reporting.py) example