mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-02 12:21:08 +00:00
Small edits (#670)
This commit is contained in:
parent
a7954101b4
commit
6a9f3adb4d
@ -46,7 +46,7 @@ clearml-agent build [-h] --id TASK_ID [--target TARGET]
|
||||
|`--install-globally`| Install the required Python packages before creating the virtual environment. Use `agent.package_manager.system_site_packages` to control the installation of the system packages. When `--docker` is used, `--install-globally` is always true.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--log-level`| SDK log level. The values are:<ul><li>`DEBUG`</li><li>`INFO`</li><li>`WARN`</li><li>`WARNING`</li><li>`ERROR`</li><li>`CRITICAL`</li></ul>|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--python-version`| Virtual environment Python version to use.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see python documentation). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see [python documentation](https://docs.python.org/3/using/cmdline.html#cmdoption-O)). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--target`| The target folder for the virtual environment and source code that will be used at launch.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|
||||
## config
|
||||
@ -96,7 +96,7 @@ clearml-agent daemon [-h] [--foreground] [--queue QUEUES [QUEUES ...]] [--order-
|
||||
|`--gpus`| If running in Docker mode (see the `--docker` option), specify the active GPUs for the Docker containers to use. These are the same GPUs set in the `NVIDIA_VISIBLE_DEVICES` environment variable. For example: <ul><li>`--gpus 0`</li><li>`--gpu 0,1,2`</li><li>`--gpus all`</li></ul>|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-h`, `--help`| Get help for this command.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--log-level`| SDK log level. The values are:<ul><li>`DEBUG`</li><li>`INFO`</li><li>`WARN`</li><li>`WARNING`</li><li>`ERROR`</li><li>`CRITICAL`</li></ul>|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see python documentation). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see [python documentation](https://docs.python.org/3/using/cmdline.html#cmdoption-O)). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--order-fairness`| Pull from each queue in a round-robin order, instead of priority order.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--queue`| Specify the queues which the worker is listening to. The values can be any combination of:<ul><li>One or more queue IDs</li><li>One or more queue names</li><li>`default` indicating the default queue</li></ul>|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--services-mode`| Launch multiple long-term docker services. Spin multiple, simultaneous Tasks, each in its own Docker container, on the same machine. Each Task will be registered as a new node in the system, providing tracking and transparency capabilities. Start up and shutdown of each Docker is verified. Use in CPU mode (`--cpu-only`) only. <br/> To limit the number of simultaneous tasks run in services mode, pass the maximum number immediately after the `--services-mode` option (e.g. `--services-mode 5`)|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
@ -137,7 +137,7 @@ clearml-agent execute [-h] --id TASK_ID [--log-file LOG_FILE] [--disable-monitor
|
||||
|`-h`, `--help`| Get help for this command.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--log-file`| The log file for Task execution output (stdout / stderr) to a text file.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--log-level`| SDK log level. The values are:<ul><li>`DEBUG`</li><li>`INFO`</li><li>`WARN`</li><li>`WARNING`</li><li>`ERROR`</li><li>`CRITICAL`</li></ul>|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see python documentation). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`-O`| Compile optimized pyc code (see [python documentation](https://docs.python.org/3/using/cmdline.html#cmdoption-O)). Repeat for more optimization.|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--require-queue`| If the specified task is not queued, the execution will fail (used for 3rd party scheduler integration, e.g. K8s, SLURM, etc.)|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|`--standalone-mode`| Do not use any network connects, assume everything is pre-installed|<img src="/docs/latest/icons/ico-optional-yes.svg" alt="Yes" className="icon size-md center-md" />|
|
||||
|
||||
|
@ -59,7 +59,7 @@ No upload of the image file is required. Links to image files stored in Google S
|
||||
|
||||
1. Click **Create** to import the image. The process can take several minutes depending on the size of the boot disk image.
|
||||
|
||||
For more information see [Import the image to your custom images list](https://cloud.google.com/compute/docs/import/import-existing-image#import_image) in the [Compute Engine Documentation](https://cloud.google.com/compute/docs).
|
||||
For more information see the [Compute Engine Documentation](https://cloud.google.com/compute/docs/import/import-existing-image#import_image).
|
||||
|
||||
## Launching
|
||||
|
||||
|
@ -22,7 +22,7 @@ and delete all cookies under the ClearML Server URL.
|
||||
|
||||
For Linux users only:
|
||||
|
||||
* Linux distribution must support Docker. For more information, see this [explanation](https://docs.docker.com/engine/install/) in the Docker documentation.
|
||||
* Linux distribution must support Docker. For more information, see the [Docker documentation](https://docs.docker.com/engine/install/).
|
||||
* Be logged in as a user with `sudo` privileges.
|
||||
* Use `bash` for all command-line instructions in this installation.
|
||||
* The ports `8080`, `8081`, and `8008` must be available for the ClearML Server services.
|
||||
|
@ -1,4 +1,4 @@
|
||||
---
|
||||
--
|
||||
title: FAQ
|
||||
---
|
||||
|
||||
@ -236,8 +236,7 @@ To replace the URL of each model, execute the following commands:
|
||||
sudo docker exec -it clearml-mongo /bin/bash
|
||||
```
|
||||
|
||||
1. Create the following script inside the Docker shell:
|
||||
as well as the URL protocol if you aren't using `s3`.
|
||||
1. Create the following script inside the Docker shell (as well as the URL protocol if you aren't using `s3`):
|
||||
```bash
|
||||
cat <<EOT >> script.js
|
||||
db.model.find({uri:{$regex:/^s3/}}).forEach(function(e,i) {
|
||||
@ -266,7 +265,7 @@ To fix this, the registered URL of each model needs to be replaced with its curr
|
||||
sudo docker exec -it clearml-mongo /bin/bash
|
||||
```
|
||||
|
||||
1. Create the following script inside the Docker shell.
|
||||
1. Create the following script inside the Docker shell:
|
||||
```bash
|
||||
cat <<EOT >> script.js
|
||||
db.model.find({uri:{$regex:/^s3/}}).forEach(function(e,i) {
|
||||
|
@ -42,7 +42,7 @@ Remember ClearML also stores your code environment, making it reproducible. So w
|
||||
|
||||
Back to the overview. One of the output types you can add to your task is what’s called an artifact.
|
||||
|
||||
An artifact can be a lot of things, mostly they’re files like model weights or pandas dataframes containing preprocessed features for example. Our documentation lists all supported data types.
|
||||
An artifact can be a lot of things, mostly they’re files like model weights or Pandas DataFrames containing preprocessed features for example. Our documentation lists all supported data types.
|
||||
|
||||
You can download the artifacts your code produced from the web UI to your local computer if you want to, but artifacts can also be retrieved programmatically.
|
||||
|
||||
|
@ -148,7 +148,7 @@ status, it isn't completed this should not happen but. If it is completed, we ar
|
||||
functions that I won't go deeper into. Basically, they format the dictionary of the state of the task scalars into
|
||||
markdown that we can actually use. Let me just go into this though one quick time. So we can basically do `Task.get_last_scalar_metrics()`,
|
||||
and this function is built into ClearML, which basically gives you a dictionary with all the metrics on your task.
|
||||
We'll just get that formatted into a table, make it into a pandas DataFrame, and then tabulate it with this cool package
|
||||
We'll just get that formatted into a table, make it into a Pandas DataFrame, and then tabulate it with this cool package
|
||||
that turns it into MarkDown. So now that we have marked down in the table, we then want to return results table. You can
|
||||
view the full task. This is basically the comment content we want to be in the comment that will later end up in the PR.
|
||||
If something else went wrong, we want to log it here. It will also end up in a comment, by the way, so then we know that
|
||||
|
@ -4,15 +4,15 @@ title: Tables Reporting (Pandas and CSV Files)
|
||||
|
||||
The [pandas_reporting.py](https://github.com/allegroai/clearml/blob/master/examples/reporting/pandas_reporting.py) example demonstrates reporting tabular data from Pandas DataFrames and CSV files as tables.
|
||||
|
||||
ClearML reports these tables in the **ClearML Web UI** **>** experiment details **>** **PLOTS**
|
||||
ClearML reports these tables, and displays them in the **ClearML Web UI** **>** experiment details **>** **PLOTS**
|
||||
tab.
|
||||
|
||||
When the script runs, it creates an experiment named `table reporting` in the `examples` project.
|
||||
|
||||
## Reporting Pandas DataFrames as Tables
|
||||
|
||||
Report Pandas DataFrames by calling the [Logger.report_table](../../references/sdk/logger.md#report_table)
|
||||
method, and providing the DataFrame in the `table_plot` parameter.
|
||||
Report Pandas DataFrames by calling [`Logger.report_table()`](../../references/sdk/logger.md#report_table),
|
||||
and providing the DataFrame in the `table_plot` parameter.
|
||||
|
||||
```python
|
||||
# Report table - DataFrame with index
|
||||
|
@ -8,8 +8,7 @@ demonstrates ClearML's Plotly integration and reporting.
|
||||
Report Plotly plots in ClearML by calling the [`Logger.report_plotly`](../../references/sdk/logger.md#report_plotly) method, and passing a complex
|
||||
Plotly figure, using the `figure` parameter.
|
||||
|
||||
In this example, the Plotly figure is created using `plotly.express.scatter` (see [Scatter Plots in Python](https://plotly.com/python/line-and-scatter/)
|
||||
in the Plotly documentation):
|
||||
In this example, the Plotly figure is created using `plotly.express.scatter` (see the [Plotly documentation](https://plotly.com/python/line-and-scatter/)):
|
||||
|
||||
```python
|
||||
# Iris dataset
|
||||
@ -33,7 +32,7 @@ task.get_logger().report_plotly(
|
||||
|
||||
When the script runs, it creates an experiment named `plotly reporting` in the examples project.
|
||||
|
||||
ClearML reports Plotly plots in the **ClearML Web UI** **>** experiment details **>** **PLOTS**
|
||||
ClearML reports Plotly figures, and displays them in the **ClearML Web UI** **>** experiment details **>** **PLOTS**
|
||||
tab.
|
||||
|
||||

|
||||

|
@ -35,7 +35,7 @@ For more information, see [Annotations](annotations.md).
|
||||
|
||||
|
||||
### Masks
|
||||
A `SingleFrame` can include a URI link to masks file if applicable. Masks correspond to raw data where the objects to be
|
||||
A `SingleFrame` can include a URI link to a mask file if applicable. Masks correspond to raw data where the objects to be
|
||||
detected are marked with colors or different opacity levels in the masks.
|
||||
|
||||
For more information, see [Masks](masks.md).
|
||||
@ -238,7 +238,7 @@ For more information, see the [`SingleFrame`](../references/hyperdataset/singlef
|
||||
|
||||
### Adding SingleFrames to a Dataset Version
|
||||
|
||||
Use the [`DatasetVersion.add_frames`](../references/hyperdataset/hyperdatasetversion.md#add_frames) method to add
|
||||
Use [`DatasetVersion.add_frames()`](../references/hyperdataset/hyperdatasetversion.md#add_frames) to add
|
||||
SingleFrames to a [Dataset version](dataset.md#dataset-versioning) (see [Creating snapshots](dataset.md#creating-snapshots)
|
||||
or [Creating child versions](dataset.md#creating-child-versions)). Frames that are already a part of the dataset version
|
||||
will only be updated.
|
||||
@ -270,8 +270,7 @@ myDatasetversion.add_frames(frames)
|
||||
|
||||
|
||||
### Accessing SingleFrames
|
||||
To access a SingleFrame, use the [`DatasetVersion.get_single_frame`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_single_frame)
|
||||
method.
|
||||
To access a SingleFrame, use [`DatasetVersion.get_single_frame()`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_single_frame).
|
||||
|
||||
```python
|
||||
from allegroai import DatasetVersion
|
||||
@ -290,8 +289,7 @@ To access a SingleFrame, the following must be specified:
|
||||
### Updating SingleFrames
|
||||
|
||||
To update a SingleFrame:
|
||||
* Access the SingleFrame by calling the [`DatasetVersion.get_single_frame`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_single_frame)
|
||||
method
|
||||
* Access the SingleFrame by calling [`DatasetVersion.get_single_frame()`](../references/hyperdataset/hyperdatasetversion.md#datasetversionget_single_frame)
|
||||
* Make changes to the frame
|
||||
* Update the frame in a DatasetVersion using the [`DatasetVersion.update_frames`](../references/hyperdataset/hyperdatasetversion.md#update_frames)
|
||||
method.
|
||||
@ -327,8 +325,7 @@ myDatasetVersion.update_frames(frames)
|
||||
|
||||
### Deleting Frames
|
||||
|
||||
To delete a SingleFrame, use the [`DatasetVersion.delete_frames`](../references/hyperdataset/hyperdatasetversion.md#delete_frames)
|
||||
method.
|
||||
To delete a SingleFrame, use [`DatasetVersion.delete_frames()`](../references/hyperdataset/hyperdatasetversion.md#delete_frames).
|
||||
|
||||
```python
|
||||
frames = []
|
||||
|
Loading…
Reference in New Issue
Block a user