Update FAQ (#799)

This commit is contained in:
pollfly 2024-03-13 10:57:43 +02:00 committed by GitHub
parent 0a4b6eaf5b
commit 68b8b524f7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -295,8 +295,11 @@ to reproduce. You can see uncommitted changes in the ClearML Web UI, in the **EX
Yes! ClearML provides multiple ways to configure your task and track your parameters! Yes! ClearML provides multiple ways to configure your task and track your parameters!
In addition to argparse, ClearML also automatically captures and tracks command line parameters created using [click](integrations/click.md), In addition to argparse, ClearML also automatically captures and tracks command line parameters created using:
[Python Fire](integrations/python_fire.md), [Hydra](integrations/hydra.md), and/or [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli). * [click](integrations/click.md)
* [Python Fire](integrations/python_fire.md)
* [Hydra](integrations/hydra.md)
* [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli)
ClearML also supports tracking code-level configuration dictionaries using [`Task.connect()`](references/sdk/task.md#connect). ClearML also supports tracking code-level configuration dictionaries using [`Task.connect()`](references/sdk/task.md#connect).
@ -319,7 +322,7 @@ For more task configuration options, see [Hyperparameters](fundamentals/hyperpar
#### I noticed that all of my experiments appear as "Training". Are there other options? <a id="other-experiment-types"></a> #### I noticed that all of my experiments appear as "Training". Are there other options? <a id="other-experiment-types"></a>
Yes! When creating experiments and calling [`Task.init`](references/sdk/task.md#taskinit), Yes! When creating experiments and calling [`Task.init()`](references/sdk/task.md#taskinit),
you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example: you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example:
```python ```python
@ -481,8 +484,10 @@ After thirty minutes, it remains unchanged.
#### Can I control what ClearML automatically logs? <a id="controlling_logging"></a> #### Can I control what ClearML automatically logs? <a id="controlling_logging"></a>
Yes! ClearML lets you control automatic logging for `stdout`, `stderr`, and frameworks when initializing a Task Yes! ClearML lets you control automatic logging for frameworks, argument parsers, `stdout`, and `stderr` when
by calling [`Task.init()`](references/sdk/task.md#taskinit). initializing a Task by calling [`Task.init()`](references/sdk/task.md#taskinit).
##### Frameworks
To control a Task's framework logging, use the `auto_connect_frameworks` parameter. Turn off all automatic logging by setting the To control a Task's framework logging, use the `auto_connect_frameworks` parameter. Turn off all automatic logging by setting the
parameter to `False`. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs. parameter to `False`. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs.
@ -497,6 +502,35 @@ auto_connect_frameworks={
} }
``` ```
##### Argument Parsers
To control a task's logging of parameters from supported argument parsers, use the `auto_connect_arg_parser` parameter.
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
parameters, input a dictionary with parameter-boolean pairs. The `False` value excludes the specified parameter.
Unspecified parameters default to `True`.
For example, the following code will not log the `Example_1` parameter, but will log all other arguments.
```python
auto_connect_arg_parser={"Example_1": False}
```
To exclude all unspecified parameters, set the `*` key to `False`.
For example, the following code will log **only** the `Example_2` parameter.
```python
auto_connect_arg_parser={"Example_2": True, "*": False}
```
An empty dictionary completely disables all automatic logging of parameters from argument parsers:
```python
auto_connect_arg_parser={}
```
##### stdout and stderr
To control the `stdout`, `stderr`, and standard logging, use the `auto_connect_streams` parameter. To control the `stdout`, `stderr`, and standard logging, use the `auto_connect_streams` parameter.
To disable logging all three, set the parameter to `False`. For finer grained control, input a dictionary, where the keys are `stout`, `stderr`, To disable logging all three, set the parameter to `False`. For finer grained control, input a dictionary, where the keys are `stout`, `stderr`,
and `logging`, and the values are booleans. For example: and `logging`, and the values are booleans. For example:
@ -732,7 +766,7 @@ Yes! You can run ClearML in Jupyter Notebooks using either of the following:
pip install clearml pip install clearml
1. Run the ClearML initialize wizard. 1. Run the ClearML setup wizard.
clearml-init clearml-init