From 68b8b524f7b8780352d2f0ee638768210f280194 Mon Sep 17 00:00:00 2001 From: pollfly <75068813+pollfly@users.noreply.github.com> Date: Wed, 13 Mar 2024 10:57:43 +0200 Subject: [PATCH] Update FAQ (#799) --- docs/faq.md | 46 ++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 40 insertions(+), 6 deletions(-) diff --git a/docs/faq.md b/docs/faq.md index 2a81dbf2..4fc8647f 100644 --- a/docs/faq.md +++ b/docs/faq.md @@ -295,8 +295,11 @@ to reproduce. You can see uncommitted changes in the ClearML Web UI, in the **EX Yes! ClearML provides multiple ways to configure your task and track your parameters! -In addition to argparse, ClearML also automatically captures and tracks command line parameters created using [click](integrations/click.md), -[Python Fire](integrations/python_fire.md), [Hydra](integrations/hydra.md), and/or [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli). +In addition to argparse, ClearML also automatically captures and tracks command line parameters created using: +* [click](integrations/click.md) +* [Python Fire](integrations/python_fire.md) +* [Hydra](integrations/hydra.md) +* [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli) ClearML also supports tracking code-level configuration dictionaries using [`Task.connect()`](references/sdk/task.md#connect). @@ -319,7 +322,7 @@ For more task configuration options, see [Hyperparameters](fundamentals/hyperpar #### I noticed that all of my experiments appear as "Training". Are there other options? -Yes! When creating experiments and calling [`Task.init`](references/sdk/task.md#taskinit), +Yes! When creating experiments and calling [`Task.init()`](references/sdk/task.md#taskinit), you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example: ```python @@ -481,8 +484,10 @@ After thirty minutes, it remains unchanged. #### Can I control what ClearML automatically logs? -Yes! ClearML lets you control automatic logging for `stdout`, `stderr`, and frameworks when initializing a Task -by calling [`Task.init()`](references/sdk/task.md#taskinit). +Yes! ClearML lets you control automatic logging for frameworks, argument parsers, `stdout`, and `stderr` when +initializing a Task by calling [`Task.init()`](references/sdk/task.md#taskinit). + +##### Frameworks To control a Task's framework logging, use the `auto_connect_frameworks` parameter. Turn off all automatic logging by setting the parameter to `False`. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs. @@ -497,6 +502,35 @@ auto_connect_frameworks={ } ``` +##### Argument Parsers + +To control a task's logging of parameters from supported argument parsers, use the `auto_connect_arg_parser` parameter. +Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged +parameters, input a dictionary with parameter-boolean pairs. The `False` value excludes the specified parameter. +Unspecified parameters default to `True`. + +For example, the following code will not log the `Example_1` parameter, but will log all other arguments. + +```python +auto_connect_arg_parser={"Example_1": False} +``` + +To exclude all unspecified parameters, set the `*` key to `False`. + +For example, the following code will log **only** the `Example_2` parameter. + +```python +auto_connect_arg_parser={"Example_2": True, "*": False} +``` + +An empty dictionary completely disables all automatic logging of parameters from argument parsers: + +```python +auto_connect_arg_parser={} +``` + +##### stdout and stderr + To control the `stdout`, `stderr`, and standard logging, use the `auto_connect_streams` parameter. To disable logging all three, set the parameter to `False`. For finer grained control, input a dictionary, where the keys are `stout`, `stderr`, and `logging`, and the values are booleans. For example: @@ -732,7 +766,7 @@ Yes! You can run ClearML in Jupyter Notebooks using either of the following: pip install clearml -1. Run the ClearML initialize wizard. +1. Run the ClearML setup wizard. clearml-init