Update FAQ (#799)

This commit is contained in:
pollfly 2024-03-13 10:57:43 +02:00 committed by GitHub
parent 0a4b6eaf5b
commit 68b8b524f7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -295,8 +295,11 @@ to reproduce. You can see uncommitted changes in the ClearML Web UI, in the **EX
Yes! ClearML provides multiple ways to configure your task and track your parameters!
In addition to argparse, ClearML also automatically captures and tracks command line parameters created using [click](integrations/click.md),
[Python Fire](integrations/python_fire.md), [Hydra](integrations/hydra.md), and/or [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli).
In addition to argparse, ClearML also automatically captures and tracks command line parameters created using:
* [click](integrations/click.md)
* [Python Fire](integrations/python_fire.md)
* [Hydra](integrations/hydra.md)
* [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli)
ClearML also supports tracking code-level configuration dictionaries using [`Task.connect()`](references/sdk/task.md#connect).
@ -319,7 +322,7 @@ For more task configuration options, see [Hyperparameters](fundamentals/hyperpar
#### I noticed that all of my experiments appear as "Training". Are there other options? <a id="other-experiment-types"></a>
Yes! When creating experiments and calling [`Task.init`](references/sdk/task.md#taskinit),
Yes! When creating experiments and calling [`Task.init()`](references/sdk/task.md#taskinit),
you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example:
```python
@ -481,8 +484,10 @@ After thirty minutes, it remains unchanged.
#### Can I control what ClearML automatically logs? <a id="controlling_logging"></a>
Yes! ClearML lets you control automatic logging for `stdout`, `stderr`, and frameworks when initializing a Task
by calling [`Task.init()`](references/sdk/task.md#taskinit).
Yes! ClearML lets you control automatic logging for frameworks, argument parsers, `stdout`, and `stderr` when
initializing a Task by calling [`Task.init()`](references/sdk/task.md#taskinit).
##### Frameworks
To control a Task's framework logging, use the `auto_connect_frameworks` parameter. Turn off all automatic logging by setting the
parameter to `False`. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs.
@ -497,6 +502,35 @@ auto_connect_frameworks={
}
```
##### Argument Parsers
To control a task's logging of parameters from supported argument parsers, use the `auto_connect_arg_parser` parameter.
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
parameters, input a dictionary with parameter-boolean pairs. The `False` value excludes the specified parameter.
Unspecified parameters default to `True`.
For example, the following code will not log the `Example_1` parameter, but will log all other arguments.
```python
auto_connect_arg_parser={"Example_1": False}
```
To exclude all unspecified parameters, set the `*` key to `False`.
For example, the following code will log **only** the `Example_2` parameter.
```python
auto_connect_arg_parser={"Example_2": True, "*": False}
```
An empty dictionary completely disables all automatic logging of parameters from argument parsers:
```python
auto_connect_arg_parser={}
```
##### stdout and stderr
To control the `stdout`, `stderr`, and standard logging, use the `auto_connect_streams` parameter.
To disable logging all three, set the parameter to `False`. For finer grained control, input a dictionary, where the keys are `stout`, `stderr`,
and `logging`, and the values are booleans. For example:
@ -732,7 +766,7 @@ Yes! You can run ClearML in Jupyter Notebooks using either of the following:
pip install clearml
1. Run the ClearML initialize wizard.
1. Run the ClearML setup wizard.
clearml-init