mirror of
https://github.com/clearml/clearml-docs
synced 2025-01-30 22:18:02 +00:00
Update FAQ (#799)
This commit is contained in:
parent
0a4b6eaf5b
commit
68b8b524f7
46
docs/faq.md
46
docs/faq.md
@ -295,8 +295,11 @@ to reproduce. You can see uncommitted changes in the ClearML Web UI, in the **EX
|
||||
|
||||
Yes! ClearML provides multiple ways to configure your task and track your parameters!
|
||||
|
||||
In addition to argparse, ClearML also automatically captures and tracks command line parameters created using [click](integrations/click.md),
|
||||
[Python Fire](integrations/python_fire.md), [Hydra](integrations/hydra.md), and/or [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli).
|
||||
In addition to argparse, ClearML also automatically captures and tracks command line parameters created using:
|
||||
* [click](integrations/click.md)
|
||||
* [Python Fire](integrations/python_fire.md)
|
||||
* [Hydra](integrations/hydra.md)
|
||||
* [LightningCLI](https://lightning.ai/docs/pytorch/stable/cli/lightning_cli.html#lightning-cli)
|
||||
|
||||
ClearML also supports tracking code-level configuration dictionaries using [`Task.connect()`](references/sdk/task.md#connect).
|
||||
|
||||
@ -319,7 +322,7 @@ For more task configuration options, see [Hyperparameters](fundamentals/hyperpar
|
||||
|
||||
#### I noticed that all of my experiments appear as "Training". Are there other options? <a id="other-experiment-types"></a>
|
||||
|
||||
Yes! When creating experiments and calling [`Task.init`](references/sdk/task.md#taskinit),
|
||||
Yes! When creating experiments and calling [`Task.init()`](references/sdk/task.md#taskinit),
|
||||
you can provide an experiment type. ClearML supports [multiple experiment types](fundamentals/task.md#task-types). For example:
|
||||
|
||||
```python
|
||||
@ -481,8 +484,10 @@ After thirty minutes, it remains unchanged.
|
||||
|
||||
#### Can I control what ClearML automatically logs? <a id="controlling_logging"></a>
|
||||
|
||||
Yes! ClearML lets you control automatic logging for `stdout`, `stderr`, and frameworks when initializing a Task
|
||||
by calling [`Task.init()`](references/sdk/task.md#taskinit).
|
||||
Yes! ClearML lets you control automatic logging for frameworks, argument parsers, `stdout`, and `stderr` when
|
||||
initializing a Task by calling [`Task.init()`](references/sdk/task.md#taskinit).
|
||||
|
||||
##### Frameworks
|
||||
|
||||
To control a Task's framework logging, use the `auto_connect_frameworks` parameter. Turn off all automatic logging by setting the
|
||||
parameter to `False`. For finer grained control of logged frameworks, input a dictionary, with framework-boolean pairs.
|
||||
@ -497,6 +502,35 @@ auto_connect_frameworks={
|
||||
}
|
||||
```
|
||||
|
||||
##### Argument Parsers
|
||||
|
||||
To control a task's logging of parameters from supported argument parsers, use the `auto_connect_arg_parser` parameter.
|
||||
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
|
||||
parameters, input a dictionary with parameter-boolean pairs. The `False` value excludes the specified parameter.
|
||||
Unspecified parameters default to `True`.
|
||||
|
||||
For example, the following code will not log the `Example_1` parameter, but will log all other arguments.
|
||||
|
||||
```python
|
||||
auto_connect_arg_parser={"Example_1": False}
|
||||
```
|
||||
|
||||
To exclude all unspecified parameters, set the `*` key to `False`.
|
||||
|
||||
For example, the following code will log **only** the `Example_2` parameter.
|
||||
|
||||
```python
|
||||
auto_connect_arg_parser={"Example_2": True, "*": False}
|
||||
```
|
||||
|
||||
An empty dictionary completely disables all automatic logging of parameters from argument parsers:
|
||||
|
||||
```python
|
||||
auto_connect_arg_parser={}
|
||||
```
|
||||
|
||||
##### stdout and stderr
|
||||
|
||||
To control the `stdout`, `stderr`, and standard logging, use the `auto_connect_streams` parameter.
|
||||
To disable logging all three, set the parameter to `False`. For finer grained control, input a dictionary, where the keys are `stout`, `stderr`,
|
||||
and `logging`, and the values are booleans. For example:
|
||||
@ -732,7 +766,7 @@ Yes! You can run ClearML in Jupyter Notebooks using either of the following:
|
||||
|
||||
pip install clearml
|
||||
|
||||
1. Run the ClearML initialize wizard.
|
||||
1. Run the ClearML setup wizard.
|
||||
|
||||
clearml-init
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user