mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Rewrite TensorBoard and TensorboardX integration pages (#633)
This commit is contained in:
parent
c27b903f1a
commit
184c499e5f
@ -1,6 +1,5 @@
|
||||
---
|
||||
title: TensorBoard
|
||||
displayed_sidebar: mainSidebar
|
||||
title: PyTorch with TensorBoard
|
||||
---
|
||||
|
||||
The [pytorch_tensorboard.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_tensorboard.py)
|
||||
|
@ -1,6 +1,5 @@
|
||||
---
|
||||
title: TensorBoardX
|
||||
displayed_sidebar: mainSidebar
|
||||
title: TensorBoardX with PyTorch
|
||||
---
|
||||
|
||||
The [pytorch_tensorboardX.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/tensorboardx/pytorch_tensorboardX.py)
|
||||
|
60
docs/integrations/tensorboard.md
Normal file
60
docs/integrations/tensorboard.md
Normal file
@ -0,0 +1,60 @@
|
||||
---
|
||||
title: TensorBoard
|
||||
---
|
||||
|
||||
:::tip
|
||||
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
|
||||
:::
|
||||
|
||||
[TensorBoard](https://www.tensorflow.org/tensorboard) is TensorFlow's data visualization toolkit.
|
||||
ClearML automatically captures all data logged to TensorBoard. All you have to do is add two
|
||||
lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
|
||||
uncommitted code, python environment, your TensorBoard metrics, plots, images, and text.
|
||||
|
||||
View the TensorBoard outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
## Automatic Logging Control
|
||||
By default, when ClearML is integrated into your script, it captures all of your TensorBoard plots, images, and metrics.
|
||||
But, you may want to have more control over what your experiment logs.
|
||||
|
||||
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit).
|
||||
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
|
||||
frameworks, input a dictionary, with framework-boolean pairs.
|
||||
|
||||
For example:
|
||||
|
||||
```python
|
||||
auto_connect_frameworks={
|
||||
'tensorboard': False,'matplotlib': False, 'tensorflow': False, 'pytorch': True,
|
||||
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
|
||||
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
|
||||
'megengine': True, 'jsonargparse': True, 'catboost': True
|
||||
}
|
||||
```
|
||||
|
||||
## Manual Logging
|
||||
To augment its automatic logging, ClearML also provides an explicit logging interface.
|
||||
|
||||
See more information about explicitly logging information to a ClearML Task:
|
||||
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
|
||||
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
|
||||
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
|
||||
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
|
||||
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
|
||||
|
||||
### Examples
|
||||
Take a look at ClearML’s TensorBoard examples:
|
||||
* [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md) - Demonstrates logging TensorBoard outputs and TensorFlow flags
|
||||
* [TensorBoard Toy](../guides/frameworks/tensorflow/tensorboard_toy.md) - Demonstrates logging TensorBoard histograms, scalars, images, text, and TensorFlow flags
|
||||
* [Tensorboard with PyTorch](../guides/frameworks/pytorch/pytorch_tensorboard.md) - Demonstrates logging TensorBoard scalars, debug samples, and text integrated in code that uses PyTorch
|
43
docs/integrations/tensorboardx.md
Normal file
43
docs/integrations/tensorboardx.md
Normal file
@ -0,0 +1,43 @@
|
||||
---
|
||||
title: TensorboardX
|
||||
---
|
||||
|
||||
:::tip
|
||||
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
|
||||
:::
|
||||
|
||||
[TensorboardX](https://tensorboardx.readthedocs.io/en/latest/tutorial.html#what-is-tensorboard-x) is a data
|
||||
visualization toolkit to log information through PyTorch and visualize it through [TensorBoard](https://www.tensorflow.org/tensorboard).
|
||||
ClearML automatically captures all data logged to TensorboardX, including scalars, images, video, plots, and text. All you have
|
||||
to do is add two lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
|
||||
uncommitted code, python environment, your TensorboardX metrics, plots, images, and text.
|
||||
|
||||
View the TensorboardX outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
|
||||
|
||||

|
||||
|
||||
## Manual Logging
|
||||
To augment its automatic logging, ClearML also provides an explicit logging interface.
|
||||
|
||||
See more information about explicitly logging information to a ClearML Task:
|
||||
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
|
||||
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
|
||||
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
|
||||
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
|
||||
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
|
||||
|
||||
### Examples
|
||||
|
||||
Take a look at ClearML’s TensorboardX examples:
|
||||
|
||||
* [TensorboardX with PyTorch](../guides/frameworks/tensorboardx/tensorboardx.md) - Demonstrates ClearML logging TensorboardX scalars, debug
|
||||
samples, and text in code using PyTorch
|
||||
* [MegEngine MNIST](../guides/frameworks/megengine/megengine_mnist.md) - Demonstrates ClearML logging TensorboardX scalars in code using MegEngine
|
||||
* [TensorboardX Video](../guides/frameworks/tensorboardx/video_tensorboardx.md) - Demonstrates ClearML logging TensorBoardX video data.
|
@ -68,7 +68,7 @@ module.exports = {
|
||||
'integrations/python_fire', 'guides/frameworks/pytorch/pytorch_mnist',
|
||||
'integrations/ignite',
|
||||
'guides/frameworks/pytorch_lightning/pytorch_lightning_example', 'guides/frameworks/scikit-learn/sklearn_joblib_example',
|
||||
'guides/frameworks/pytorch/pytorch_tensorboard', 'guides/frameworks/tensorboardx/tensorboardx', 'integrations/tensorflow',
|
||||
'integrations/tensorboard', 'integrations/tensorboardx', 'integrations/tensorflow',
|
||||
'integrations/seaborn', 'integrations/xgboost', 'integrations/yolov5', 'integrations/yolov8'
|
||||
]
|
||||
},
|
||||
|
Loading…
Reference in New Issue
Block a user