Rewrite TensorBoard and TensorboardX integration pages (#633)

This commit is contained in:
pollfly 2023-08-08 19:13:00 +03:00 committed by GitHub
parent c27b903f1a
commit 184c499e5f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 106 additions and 5 deletions

View File

@ -1,6 +1,5 @@
---
title: TensorBoard
displayed_sidebar: mainSidebar
title: PyTorch with TensorBoard
---
The [pytorch_tensorboard.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_tensorboard.py)

View File

@ -1,6 +1,5 @@
---
title: TensorBoardX
displayed_sidebar: mainSidebar
title: TensorBoardX with PyTorch
---
The [pytorch_tensorboardX.py](https://github.com/allegroai/clearml/blob/master/examples/frameworks/tensorboardx/pytorch_tensorboardX.py)

View File

@ -0,0 +1,60 @@
---
title: TensorBoard
---
:::tip
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
:::
[TensorBoard](https://www.tensorflow.org/tensorboard) is TensorFlow's data visualization toolkit.
ClearML automatically captures all data logged to TensorBoard. All you have to do is add two
lines of code to your script:
```python
from clearml import Task
task = Task.init(task_name="<task_name>", project_name="<project_name>")
```
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
uncommitted code, python environment, your TensorBoard metrics, plots, images, and text.
View the TensorBoard outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
![TensorBoard WebApp scalars](../img/examples_pytorch_tensorboard_07.png)
![Tensorboard WebApp debug samples](../img/examples_tensorboard_toy_pytorch_02.png)
## Automatic Logging Control
By default, when ClearML is integrated into your script, it captures all of your TensorBoard plots, images, and metrics.
But, you may want to have more control over what your experiment logs.
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit).
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
frameworks, input a dictionary, with framework-boolean pairs.
For example:
```python
auto_connect_frameworks={
'tensorboard': False,'matplotlib': False, 'tensorflow': False, 'pytorch': True,
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
'megengine': True, 'jsonargparse': True, 'catboost': True
}
```
## Manual Logging
To augment its automatic logging, ClearML also provides an explicit logging interface.
See more information about explicitly logging information to a ClearML Task:
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
### Examples
Take a look at ClearMLs TensorBoard examples:
* [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md) - Demonstrates logging TensorBoard outputs and TensorFlow flags
* [TensorBoard Toy](../guides/frameworks/tensorflow/tensorboard_toy.md) - Demonstrates logging TensorBoard histograms, scalars, images, text, and TensorFlow flags
* [Tensorboard with PyTorch](../guides/frameworks/pytorch/pytorch_tensorboard.md) - Demonstrates logging TensorBoard scalars, debug samples, and text integrated in code that uses PyTorch

View File

@ -0,0 +1,43 @@
---
title: TensorboardX
---
:::tip
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
:::
[TensorboardX](https://tensorboardx.readthedocs.io/en/latest/tutorial.html#what-is-tensorboard-x) is a data
visualization toolkit to log information through PyTorch and visualize it through [TensorBoard](https://www.tensorflow.org/tensorboard).
ClearML automatically captures all data logged to TensorboardX, including scalars, images, video, plots, and text. All you have
to do is add two lines of code to your script:
```python
from clearml import Task
task = Task.init(task_name="<task_name>", project_name="<project_name>")
```
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
uncommitted code, python environment, your TensorboardX metrics, plots, images, and text.
View the TensorboardX outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
![TensorboardX WebApp scalars](../img/examples_pytorch_tensorboardx_03.png)
## Manual Logging
To augment its automatic logging, ClearML also provides an explicit logging interface.
See more information about explicitly logging information to a ClearML Task:
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
### Examples
Take a look at ClearMLs TensorboardX examples:
* [TensorboardX with PyTorch](../guides/frameworks/tensorboardx/tensorboardx.md) - Demonstrates ClearML logging TensorboardX scalars, debug
samples, and text in code using PyTorch
* [MegEngine MNIST](../guides/frameworks/megengine/megengine_mnist.md) - Demonstrates ClearML logging TensorboardX scalars in code using MegEngine
* [TensorboardX Video](../guides/frameworks/tensorboardx/video_tensorboardx.md) - Demonstrates ClearML logging TensorBoardX video data.

View File

@ -68,7 +68,7 @@ module.exports = {
'integrations/python_fire', 'guides/frameworks/pytorch/pytorch_mnist',
'integrations/ignite',
'guides/frameworks/pytorch_lightning/pytorch_lightning_example', 'guides/frameworks/scikit-learn/sklearn_joblib_example',
'guides/frameworks/pytorch/pytorch_tensorboard', 'guides/frameworks/tensorboardx/tensorboardx', 'integrations/tensorflow',
'integrations/tensorboard', 'integrations/tensorboardx', 'integrations/tensorflow',
'integrations/seaborn', 'integrations/xgboost', 'integrations/yolov5', 'integrations/yolov8'
]
},