* [Tensorboard with PyTorch](../guides/frameworks/pytorch/pytorch_tensorboard.md) - logging TensorBoard scalars, debug samples, and text integrated into
The Logger class provides methods to control aspects of ClearML's logging.
### Upload Destination
Set the default storage URI for uploading debug samples using the [`Logger.set_default_upload_destination`](../references/sdk/logger.md#set_default_upload_destination) method.
The debug samples are uploaded separately. A link to each sample is reported.
:::note DESTINATION STORAGE CREDENTIALS
Credentials for the destination storage are specified in the [ClearML configuration file](../configs/clearml_conf.md#sdk-section).
:::
### Automatic Logging Settings
The Logger class provides methods for fine-tuning ClearML's automatic logging behavior with Matplotlib and Tensorboard.
For example, use the [Logger.matplotlib_force_report_non_interactive](../references/sdk/logger.md#loggermatplotlib_force_report_non_interactive)
class method to control how matplotlib objects are logged. See the [Logger.tensorboard_auto_group_scalars](../references/sdk/logger.md#loggertensorboard_auto_group_scalars)
and [Logger.tensorboard_single_series_per_graph](../references/sdk/logger.md#loggertensorboard_single_series_per_graph)
class methods.
### Set Default NaN and Inf Values
When you report metrics that include NaN or Inf values, ClearML logs them as `0` by default. You can specify
different default values for NaN and Inf using the [`Logger.set_reporting_nan_value`](../references/sdk/logger.md#loggerset_reporting_nan_value)
and the [`Logger.set_reporting_inf_value`](../references/sdk/logger.md#loggerset_reporting_inf_value) class methods respectively.