mirror of
https://github.com/clearml/clearml-docs
synced 2025-03-03 02:32:49 +00:00
Add example links (#57)
This commit is contained in:
parent
397a7d5a41
commit
c52697fd1b
@ -95,9 +95,9 @@ Some tasks, mainly control (Like a pipeline controller) or services (Like an arc
|
||||
This is where the `services-modes` comes into play. An agent running in services-mode will spin multiple tasks at the same time, each Task will register itself as a sub-agent (visible in the workers Tab in the UI).
|
||||
Some examples for suitable tasks are:
|
||||
|
||||
- [Pipeline controller](https://github.com/allegroai/clearml/blob/master/examples/pipeline/pipeline_controller.py) - Implementing the pipeline scheduling and logic
|
||||
- [Hyper-Parameter Optimization](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/hyper_parameter_optimizer.py) - Implementing an active selection of experiments
|
||||
- [Control Service](https://github.com/allegroai/clearml/blob/master/examples/services/aws-autoscaler/aws_autoscaler.py) - AWS Autoscaler for example
|
||||
- [External services](https://github.com/allegroai/clearml/blob/master/examples/services/monitoring/slack_alerts.py) - Such as Slack integration alert service
|
||||
- [Pipeline controller](../guides/pipeline/pipeline_controller.md) - Implementing the pipeline scheduling and logic
|
||||
- [Hyper-Parameter Optimization](../guides/optimization/hyper-parameter-optimization/examples_hyperparam_opt.md) - Implementing an active selection of experiments
|
||||
- [Control Service](../guides/services/aws_autoscaler.md) - AWS Autoscaler for example
|
||||
- [External services](../guides/services/slack_alerts.md) - Such as Slack integration alert service
|
||||
|
||||
By default, [ClearML Server](../deploying_clearml/clearml_server.md) comes with an Agent running on the machine that runs it. It also comes with a Services queue.
|
||||
|
@ -76,10 +76,14 @@ logs the models and all snapshot paths.
|
||||
|
||||

|
||||
|
||||
See model storage examples, [TF](https://github.com/allegroai/clearml/blob/master/examples/frameworks/tensorflow/tensorflow_mnist.py),
|
||||
[PyTorch](https://github.com/allegroai/clearml/blob/master/examples/frameworks/pytorch/pytorch_mnist.py),
|
||||
[Keras](https://github.com/allegroai/clearml/blob/master/examples/frameworks/keras/keras_tensorboard.py),
|
||||
[Scikit-Learn](https://github.com/allegroai/clearml/blob/master/examples/frameworks/scikit-learn/sklearn_joblib_example.py).
|
||||
See automatic model logging examples:
|
||||
* [TF](../guides/frameworks/tensorflow/tensorflow_mnist.md)
|
||||
* [PyTorch](../guides/frameworks/pytorch/pytorch_mnist.md)
|
||||
* [Keras](../guides/frameworks/keras/keras_tensorboard.md)
|
||||
* [Scikit-Learn](../guides/frameworks/scikit-learn/sklearn_joblib_example.md)
|
||||
* [XGBoost](../guides/frameworks/xgboost/xgboost_sample.md)
|
||||
* [FastAI](../guides/frameworks/fastai/fastai_with_tensorboard.md)
|
||||
|
||||
|
||||
### Manual Model Logging
|
||||
|
||||
@ -121,6 +125,7 @@ output_model.update_weights()
|
||||
for model weight upload (`registered_uri`).
|
||||
* Model Metadata - Model description and iteration number.
|
||||
|
||||
See [Model Configuration](../guides/reporting/model_config.md) example.
|
||||
|
||||
### Using Models
|
||||
|
||||
|
@ -57,7 +57,7 @@ optimization.
|
||||
* **BOHB** - `automation.hpbandster.bandster.OptimizerBOHB`. BOHB performs robust and efficient hyperparameter optimization
|
||||
at scale by combining the speed of Hyperband searches with the guidance and guarantees of convergence of Bayesian Optimization.
|
||||
For more information about HpBandSter BOHB, see the [HpBandSter](https://automl.github.io/HpBandSter/build/html/index.html)
|
||||
documentation.
|
||||
documentation and a [code example](../guides/frameworks/pytorch/notebooks/image/hyperparameter_search.md).
|
||||
* **Random** uniform sampling of hyperparameters - `automation.optimization.RandomSearch`.
|
||||
* **Full grid** sampling strategy of every hyperparameter combination - `Grid search automation.optimization.GridSearch`.
|
||||
* **Custom** - `automation.optimization.SearchStrategy` - Use a custom class and inherit from the ClearML automation base strategy class
|
||||
|
@ -34,6 +34,8 @@ args = parser.parse_args()
|
||||
task = Task.init(project_name="examples",task_name="argparser logging")
|
||||
```
|
||||
|
||||
See another argparse logging example [here](../guides/reporting/hyper_parameters.md).
|
||||
|
||||
### Click Example
|
||||
|
||||
```python
|
||||
@ -55,7 +57,6 @@ hello()
|
||||
|
||||
See another code example [here](https://github.com/allegroai/clearml/blob/master/examples/frameworks/click/click_multi_cmd.py).
|
||||
|
||||
|
||||
## Connecting Objects
|
||||
|
||||
Users can directly connect objects, such as dictionaries or even custom classes, to Tasks.
|
||||
@ -75,6 +76,8 @@ task = Task.init(project_name='examples',task_name='argparser')
|
||||
|
||||
task.connect(me)
|
||||
```
|
||||
See connecting configuration objects example [here](../guides/reporting/hyper_parameters.md).
|
||||
|
||||
|
||||
* Connecting a dictionary:
|
||||
```python
|
||||
@ -121,7 +124,11 @@ The CLEARML_LOG_ENVIRONMENT always overrides the clearml.conf file.
|
||||
|
||||
## TF Defines
|
||||
|
||||
ClearML automatically captures TFDefine files, which are used as configuration files for Tensorflow.
|
||||
ClearML automatically captures TensorFlow definitions, which are used as configuration files for Tensorflow.
|
||||
|
||||
See examples of ClearML's automatic logging of TF Defines:
|
||||
* [TensorFlow MNIST](../guides/frameworks/tensorflow/tensorflow_mnist.md)
|
||||
* [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md)
|
||||
|
||||
## Hydra
|
||||
|
||||
|
@ -18,7 +18,7 @@ In ClearML, there are four types of reports:
|
||||
|
||||
## Automatic Reporting
|
||||
|
||||
ClearML automatically captures metrics reported to tools, such as Tensorboard and Matplotlib, with no additional code
|
||||
ClearML automatically captures metrics reported to tools, such as TensorBoard and Matplotlib, with no additional code
|
||||
necessary.
|
||||
|
||||
In addition, ClearML will capture and log everything written to standard output, from debug messages to errors to
|
||||
@ -28,10 +28,28 @@ GPU, CPU, Memory and Network information is also automatically captured.
|
||||
|
||||

|
||||
|
||||
### Supported packages
|
||||
- [Tensorboard](https://www.tensorflow.org/tensorboard)
|
||||
- [TensorboardX](https://github.com/lanpa/tensorboardX)
|
||||
- [matplotlib](https://matplotlib.org/)
|
||||
### Supported Packages
|
||||
- [TensorBoard](https://www.tensorflow.org/tensorboard)
|
||||
- [TensorBoardX](https://github.com/lanpa/tensorboardX)
|
||||
- [Matplotlib](https://matplotlib.org/)
|
||||
|
||||
### Automatic Reporting Examples
|
||||
Check out some of ClearML's automatic reporting examples for supported packages:
|
||||
* TensorBoard
|
||||
* [TensorBoard PR Curve](../guides/frameworks/tensorflow/tensorboard_pr_curve.md) - logging TensorBoard outputs and
|
||||
TensorFlow flags
|
||||
* [TensorBoard Toy](../guides/frameworks/tensorflow/tensorboard_toy.md) - logging TensorBoard histograms, scalars, images, text, and
|
||||
TensorFlow flags
|
||||
* [Tensorboard with PyTorch](../guides/frameworks/pytorch/pytorch_tensorboard.md) - logging TensorBoard scalars, debug samples, and text integrated into
|
||||
code that uses PyTorch
|
||||
* [TensorBoardX](../guides/frameworks/tensorboardx/tensorboardx.md) - logging TensorBoardX scalars, debug
|
||||
samples, and text in code using PyTorch
|
||||
* Matplotlib
|
||||
* [Matplotlib Script Example](../guides/frameworks/matplotlib/matplotlib_example.md) and [Jupyter Notebook](../guides/frameworks/matplotlib/allegro_clearml_matplotlib_example.md) -
|
||||
logging scatter diagrams plotted with Matplotlib
|
||||
* [Matplotlib with PyTorch](../guides/frameworks/pytorch/pytorch_matplotlib.md) - logging debug images shown
|
||||
by Matplotlib
|
||||
|
||||
|
||||
|
||||
## Manual Reporting
|
||||
@ -46,9 +64,7 @@ The object used for reporting metrics is called **logger** and is obtained by ca
|
||||
logger = task.get_logger()
|
||||
```
|
||||
|
||||
Check out all the available object types that can be reported in the example [here](../guides/reporting/scalar_reporting.md).
|
||||
|
||||
#### Media reporting
|
||||
### Media Reporting
|
||||
|
||||
ClearML also supports reporting media (such as audio, video and images) for every iteration.
|
||||
This section is mostly used for debugging. It's recommended to use [artifacts](artifacts.md#artifacts) for storing script
|
||||
@ -59,4 +75,26 @@ See details in [Logger.report_media](../references/sdk/logger.md#report_media).
|
||||
|
||||

|
||||
|
||||
Check out the Media Reporting [example](../guides/reporting/media_reporting).
|
||||
### Explicit Reporting Examples
|
||||
|
||||
Check out ClearML's explicit reporting examples for various types of results:
|
||||
- [Text](../guides/reporting/text_reporting.md)
|
||||
- [Scalars](../guides/reporting/scalar_reporting.md)
|
||||
- Plots
|
||||
- [2d plots](../guides/reporting/scatter_hist_confusion_mat_reporting.md)
|
||||
- Histograms
|
||||
- Confusion matrices
|
||||
- Scatter plots
|
||||
- [3d plots](../guides/reporting/3d_plots_reporting.md)
|
||||
- Surface plots
|
||||
- Scatter plots
|
||||
- [Tables](../guides/reporting/pandas_reporting.md)
|
||||
- Pandas DataFrames
|
||||
- CSV file
|
||||
- [Matplotlib figures](../guides/reporting/manual_matplotlib_reporting.md)
|
||||
- [Plotly figures](../guides/reporting/plotly_reporting.md)
|
||||
- Debug Samples
|
||||
- [Images](../guides/reporting/image_reporting.md)
|
||||
- [HTML](../guides/reporting/html_reporting.md)
|
||||
- [Media - images, audio, video](../guides/reporting/media_reporting.md)
|
||||
- Explicit reporting in Jupyter Notebook [example](../guides/reporting/clearml_logging_example.md)
|
||||
|
@ -66,4 +66,8 @@ Custom pipelines usually involve cloning template tasks, modifying their paramet
|
||||
them to queues (for execution by [agents](../clearml_agent.md)). It's possible to create custom logic that controls inputs
|
||||
(e.g. overriding hyperparameters and artifacts) and acts upon task outputs.
|
||||
|
||||
See an example of a custom pipeline [here](../guides/automation/task_piping.md).
|
||||
See examples of custom pipelines:
|
||||
* [Task Piping](../guides/automation/task_piping.md)
|
||||
* [Manual Random Parameter Search](../guides/automation/manual_random_param_search_example.md)
|
||||
|
||||
|
||||
|
@ -5,9 +5,9 @@ title: Storage Examples
|
||||
This page describes storage examples using the [StorageManager](../../references/sdk/storage.md)
|
||||
class. The storage examples include:
|
||||
|
||||
* [Downloading a file](#downloading_storagemanager) - Get an object from storage.
|
||||
* [Uploading a file](#uploading_storagemanager) - Upload an object.
|
||||
* [Setting cache limits](#cache) - Set the maximum number of objects.
|
||||
* [Downloading a file](#downloading-a-file) - Get an object from storage.
|
||||
* [Uploading a file](#uploading-a-file) - Upload an object.
|
||||
* [Setting cache limits](#setting-cache-limits) - Set the maximum number of objects.
|
||||
|
||||
:::note
|
||||
`StorageManager` supports http(s), S3, Google Cloud Storage, Azure, and file system folders.
|
||||
@ -26,6 +26,10 @@ method, and specify the destination location as the `remote_url` argument:
|
||||
|
||||
manager.get_local_copy(remote_url="s3://MyBucket/MyFolder/file.zip")
|
||||
|
||||
:::note
|
||||
Zip and tar.gz files will be automatically extracted to cache. This can be controlled with the`extract_archive` flag.
|
||||
:::
|
||||
|
||||
To download a file to a specific context in cache, specify the name of the context as the `cache_context` argument:
|
||||
|
||||
manager.get_local_copy(remote_url="s3://MyBucket/MyFolder/file.ext", cache_context="test")
|
||||
@ -34,7 +38,6 @@ To download a non-compressed file, set the `extract_archive` argument to `False`
|
||||
|
||||
manager.get_local_copy(remote_url="s3://MyBucket/MyFolder/file.ext", extract_archive=False)
|
||||
|
||||
<a class="tr_top_negative" name="uploading_storagemanager"></a>
|
||||
|
||||
### Uploading a file
|
||||
|
||||
|
@ -99,31 +99,11 @@ It's also possible to specify credentials for a specific bucket.
|
||||
|
||||
## Storage Manager
|
||||
|
||||
ClearML Offers a package to manage downloading, uploading and caching of content directly from code.
|
||||
ClearML offers the [StorageManager](../references/sdk/storage.md) class to manage downloading, uploading, and caching of
|
||||
content directly from code.
|
||||
|
||||
### Uploading files
|
||||
To upload a file using storage manager, just run the following line specifying the path to a local file or folder, and the
|
||||
remote destination.
|
||||
```python
|
||||
from clearml import StorageManager
|
||||
See [Storage Examples](../guides/storage/examples_storagehelper.md).
|
||||
|
||||
StorageManager.upload_file(local_file='path_to_file',remote_url='s3://my_bucket')
|
||||
```
|
||||
|
||||
|
||||
### Downloading files
|
||||
To download files into cache, run the following line, specifying the remote destination's URL.
|
||||
```python
|
||||
StorageManager.get_local_copy(remote_url='s3://my_bucket/path_to_file')
|
||||
```
|
||||
|
||||
:::note
|
||||
Zip and tar.gz files will be automatically extracted to cache. This can be controlled with the`extract_archive` flag.
|
||||
:::
|
||||
|
||||
### Controling cache file limit
|
||||
It's possible to control the maximum cache size by limiting the number of files it stores.
|
||||
This is done by calling the ```StorageManager.set_cache_file_limit()``` method.
|
||||
|
||||
## Caching
|
||||
ClearML also manages a cache of all downloaded content so nothing is duplicated, and code won't need to download the same
|
||||
|
@ -87,7 +87,7 @@ module.exports = {
|
||||
]
|
||||
},
|
||||
{'Scikit-Learn': ['guides/frameworks/scikit-learn/sklearn_joblib_example', 'guides/frameworks/scikit-learn/sklearn_matplotlib_example']},
|
||||
{'TensorboardX': ['guides/frameworks/tensorboardx/tensorboardx']},
|
||||
{'TensorBoardX': ['guides/frameworks/tensorboardx/tensorboardx']},
|
||||
{
|
||||
'Tensorflow': ['guides/frameworks/tensorflow/tensorboard_pr_curve', 'guides/frameworks/tensorflow/tensorboard_toy',
|
||||
'guides/frameworks/tensorflow/tensorflow_mnist', 'guides/frameworks/tensorflow/integration_keras_tuner']
|
||||
|
Loading…
Reference in New Issue
Block a user