Compare commits

..

46 Commits

Author SHA1 Message Date
allegroai
5c6b3ccc94 Version bump to v0.13.1 2020-01-27 19:45:26 +02:00
allegroai
df10e6ed46 Fix conda support to install graphviz packages even if matplotlib was installed from pip 2020-01-27 19:22:51 +02:00
allegroai
8ef78fd058 version bump 2020-01-27 16:23:23 +02:00
allegroai
640c83288a Add pip --disable-pip-version-check, to remove pip version warnings 2020-01-27 16:23:15 +02:00
allegroai
788c79a66f Support git repositories without ".git" suffix 2020-01-27 15:43:35 +02:00
allegroai
bef87c7744 Fix typos 2020-01-27 15:42:37 +02:00
allegroai
f139891276 version bump 2020-01-26 15:06:45 +02:00
allegroai
2afaff1713 Fix poetry support inside virtualenv with pyenv 2020-01-26 15:05:59 +02:00
allegroai
a57a5b151c Daemon support for conda and poetry 2020-01-26 15:05:20 +02:00
allegroai
97f446d523 Improve conda support for .post versions and bad packages 2020-01-26 13:58:50 +02:00
allegroai
a88262c097 version bump 2020-01-22 12:38:20 +02:00
allegroai
284271c654 Support limiting pip version, limit to <20 by default 2020-01-22 12:02:12 +02:00
allegroai
ae2775f7b8 Support poetry when agent is installed inside virtualenv 2020-01-22 11:22:43 +02:00
allegroai
eb012f5c24 version bump 2020-01-21 16:23:53 +02:00
allegroai
06897f7606 Fix poetry support 2020-01-21 16:23:36 +02:00
allegroai
599219b02d Add conda support 2020-01-21 16:21:18 +02:00
allegroai
b6e04ab982 Fix YAML warning 2020-01-21 16:19:43 +02:00
allegroai
98fe162878 Fix poetry support 2020-01-16 11:17:05 +02:00
allegroai
f829d80a49 version bump 2020-01-16 11:11:02 +02:00
allegroai
b7e568e299 Fix requirements handling and poetry support 2020-01-16 11:10:38 +02:00
allegroai
6912846326 version bump 2020-01-14 15:26:29 +02:00
allegroai
224868c9a4 Fix relative requirements "-e" support by installing from the code's cwd 2020-01-14 13:05:12 +02:00
allegroai
b1ca90a303 Run under virtualenv in AWS dynamic cluster management service 2020-01-14 11:44:20 +02:00
allegroai
dee2475698 Add build-essential for pip-installed packages requiring compilation in AWS dynamic cluster management service 2020-01-14 11:43:41 +02:00
allegroai
aeede81474 Fix trains.conf injection in AWS dynamic cluster management service 2020-01-14 11:40:57 +02:00
allegroai
2d91d4cde6 Add support for "-e ./folder" lines in requirements 2020-01-14 11:37:41 +02:00
allegroai
7a11c7c165 Make sure logs are sent even in case an exception occurs inside the logging monitor 2020-01-13 18:14:12 +02:00
allegroai
a9f479cfcd Add extra docker parameters bash script to use when running an experiment using a docker image 2020-01-13 12:17:59 +02:00
allegroai
c1d91b0d6a Use packaging instead of semantic_version 2020-01-13 12:14:43 +02:00
allegroai
cbfba6acb2 Do not try to check for virtualenv command, we use it as python package 2020-01-13 12:12:38 +02:00
allegroai
f2e2e1f94a Add configuration option to force docker pull 2020-01-13 12:11:06 +02:00
allegroai
23668a403a Add auto terminate, increased polling interval and default docker image in AWS dynamic cluster management service 2020-01-08 12:27:40 +02:00
allegroai
facbee0005 Version bump to v0.13.0 2020-01-06 15:27:12 +02:00
allegroai
c486cfd09f Add extra agent configuration and bash script for the AWS dynamic cluster management service 2020-01-06 15:26:55 +02:00
allegroai
119ecaa2e3 Fix AWS dynamic cluster management service use of AWS credentials 2020-01-05 14:12:40 +02:00
allegroai
d6cc2be653 Fix AWS dynamic cluster management service use of AWS credentials 2020-01-05 13:57:29 +02:00
allegroai
41d75df40c Add AWS dynamic cluster management service 2019-12-24 23:22:17 +02:00
allegroai
901c4be9ae Add AWS dynamic cluster management service 2019-12-24 23:09:26 +02:00
Allegro AI
966b14f914 Update README.md 2019-12-24 22:52:30 +02:00
allegroai
847d35cbbb Add AWS dynamic cluster management service 2019-12-24 22:48:44 +02:00
allegroai
4022cb5c63 Add AWS dynamic cluster management service 2019-12-24 22:35:26 +02:00
allegroai
2b239829de Add extra_index_url to the configuration wizard 2019-12-24 18:23:59 +02:00
allegroai
402856656f Support various events endpoints for APIClient 2019-12-24 18:10:40 +02:00
allegroai
7b94ff410c Documentation 2019-12-24 12:47:35 +02:00
allegroai
0a03dced50 Do not show urllib3 logging level as part of the agent's configuration dump 2019-12-21 18:23:17 +02:00
allegroai
ffe653afc6 Support docker pre-installed pytorch versions that do not exist on PyPI/PyTorch.org 2019-12-21 18:22:21 +02:00
27 changed files with 4032 additions and 123 deletions

View File

@@ -1,5 +1,5 @@
# TRAINS Agent
## Deep Learning DevOps For Everyone - Now supports all platforms (Linux, macOS, and Windows)
## Deep Learning DevOps For Everyone - Now supporting all platforms (Linux, macOS, and Windows)
"All the Deep-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
@@ -14,7 +14,7 @@ It is a zero configuration fire-and-forget execution agent, which combined with
**Full AutoML in 5 steps**
1. Install the [TRAINS server](https://github.com/allegroai/trains-agent) (or use our [open server](https://demoapp.trains.allegro.ai))
2. `pip install trains_agent` ([install](#installing-the-trains-agent) the TRAINS agent on any GPU machine: on-premises / cloud / ...)
2. `pip install trains-agent` ([install](#installing-the-trains-agent) the TRAINS agent on any GPU machine: on-premises / cloud / ...)
3. Add [TRAINS](https://github.com/allegroai/trains) to your code with just 2 lines & run it once (on your machine / laptop)
4. Change the [parameters](#using-the-trains-agent) in the UI & schedule for [execution](#using-the-trains-agent) (or automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
@@ -133,7 +133,7 @@ Development Machine |
### Installing the TRAINS Agent
```bash
pip install trains_agent
pip install trains-agent
```
### TRAINS Agent Usage Examples

View File

@@ -40,6 +40,10 @@ agent {
package_manager: {
# supported options: pip, conda
type: pip,
# specify pip version to use (examples "<20", "==19.3.1", "", empty string will install the latest version)
# pip_version: "<20"
# virtual environment inheres packages from system
system_site_packages: false,
# install with --upgrade
@@ -83,6 +87,17 @@ agent {
# apt cache folder used mapped into docker, for ubuntu package caching
docker_apt_cache = ~/.trains/apt-cache
# optional arguments to pass to docker image
# these are local for this agent and will not be updated in the experiment's docker_cmd section
# extra_docker_arguments: ["--ipc=host", ]
# optional shell script to run in docker when started before the experiment is started
# extra_docker_shell_script: ["apt-get install -y bindfs", ]
# set to true in order to force "docker pull" before running an experiment using a docker image.
# This makes sure the docker image is updated.
docker_force_pull: false
default_docker: {
# default docker image to use when running in docker mode
image: "nvidia/cuda"

View File

@@ -0,0 +1,580 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Auto-Magically Spin AWS EC2 Instances On Demand \n",
"# and Create a Dynamic Cluster Running *Trains-Agent*\n",
"\n",
"### Define your budget and execute the notebook, that's it\n",
"### You now have a fully managed cluster on AWS 🎉 🎊 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**trains-agent**'s main goal is to quickly pull a job from an execution queue, setup the environment (as defined in the experiment, including git cloning, python packages etc.) then execute the experiment and monitor it.\n",
"\n",
"This notebook defines a cloud budget (currently only AWS is supported, but feel free to expand with PRs), and spins an instance the minute a job is waiting for execution. It will also spin down idle machines, saving you some $$$ :)\n",
"\n",
"Configuration steps\n",
"- Define maximum budget to be used (instance type / number of instances).\n",
"- Create new execution *queues* in the **trains-server**.\n",
"- Define mapping between the created the *queues* and an instance budget.\n",
"\n",
"**TL;DR - This notebook:**\n",
"- Will spin instances if there are jobs in the execution *queues*, until it will hit the budget limit. \n",
"- If machines are idle, it will spin them down.\n",
"\n",
"The controller implementation itself is stateless, meaning you can always re-execute the notebook, if for some reason it stopped.\n",
"\n",
"It is as simple as it sounds, but extremely powerful\n",
"\n",
"Enjoy your newly created dynamic cluster :)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Install & import required packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install trains-agent\n",
"!pip install boto3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Define AWS instance types and configuration (Instance Type, EBS, AMI etc.)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# AWS EC2 machines types - default AMI - NVIDIA Deep Learning AMI 19.11.3\n",
"RESOURCE_CONFIGURATIONS = {\n",
" \"amazon_ec2_normal\": {\n",
" \"instance_type\": \"g4dn.4xlarge\",\n",
" \"is_spot\": False,\n",
" \"availability_zone\": \"us-east-1b\",\n",
" \"ami_id\": \"ami-07c95cafbb788face\",\n",
" \"ebs_device_name\": \"/dev/xvda\",\n",
" \"ebs_volume_size\": 100,\n",
" \"ebs_volume_type\": \"gp2\",\n",
" },\n",
" \"amazon_ec2_high\": {\n",
" \"instance_type\": \"g4dn.8xlarge\",\n",
" \"is_spot\": False,\n",
" \"availability_zone\": \"us-east-1b\",\n",
" \"ami_id\": \"ami-07c95cafbb788face\",\n",
" \"ebs_device_name\": \"/dev/xvda\",\n",
" \"ebs_volume_size\": 100,\n",
" \"ebs_volume_type\": \"gp2\",\n",
" },\n",
"}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Define machine budget per execution queue\n",
"\n",
"Now that we defined our budget, we need to connect it with the **Trains** cluster.\n",
"\n",
"We map each queue to a resource type (instance type).\n",
"\n",
"Create two queues in the WebUI:\n",
"- Browse to http://your_trains_server_ip:8080/workers-and-queues/queues\n",
"- Then click on the \"New Queue\" button and name your queues \"aws_normal\" and \"aws_high\" respectively\n",
"\n",
"The QUEUES dictionary hold the mapping between the queue name and the type/number of instances to spin connected to the specific queue.\n",
"```\n",
"QUEUES = {\n",
" 'queue_name': [(\"instance-type-as-defined-in-RESOURCE_CONFIGURATIONS\", max_number_of_instances), ]\n",
"}\n",
"```\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Trains-Agent Queues - Machines budget per Queue\n",
"# Per queue: list of (machine type as defined in RESOURCE_CONFIGURATIONS,\n",
"# max instances for the specific queue). Order machines from most preferred to least.\n",
"QUEUES = {\n",
" \"aws_normal\": [(\"amazon_ec2_normal\", 2),],\n",
" \"aws_high\": [(\"amazon_ec2_high\", 1)],\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Credentials for your AWS account, as well as for your **Trains-Server**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# AWS credentials (leave empty to use credentials set using the aws cli)\n",
"CLOUD_CREDENTIALS_KEY = \"\"\n",
"CLOUD_CREDENTIALS_SECRET = \"\"\n",
"CLOUD_CREDENTIALS_REGION = \"us-east-1\"\n",
"\n",
"# TRAINS configuration\n",
"TRAINS_SERVER_WEB_SERVER = \"http://localhost:8080\"\n",
"TRAINS_SERVER_API_SERVER = \"http://localhost:8008\"\n",
"TRAINS_SERVER_FILES_SERVER = \"http://localhost:8081\"\n",
"# TRAINS credentials\n",
"TRAINS_ACCESS_KEY = \"\"\n",
"TRAINS_SECRET_KEY = \"\"\n",
"# Git User/Pass to be used by trains-agent,\n",
"# leave empty if image already contains git ssh-key\n",
"TRAINS_GIT_USER = \"\"\n",
"TRAINS_GIT_PASS = \"\"\n",
"\n",
"# Additional fields for trains.conf file created on the remote instance\n",
"# for example: 'agent.default_docker.image: \"nvidia/cuda:10.0-cudnn7-runtime\"'\n",
"EXTRA_TRAINS_CONF = \"\"\"\n",
"\"\"\"\n",
"\n",
"# Bash script to run on instances before running trains-agent\n",
"# Example: \"\"\"\n",
"# echo \"This is the first line\"\n",
"# echo \"This is the second line\"\n",
"# \"\"\"\n",
"EXTRA_BASH_SCRIPT = \"\"\"\n",
"\"\"\"\n",
"\n",
"# Default docker for trains-agent when running in docker mode (requires docker v19.03 and above). \n",
"# Leave empty to run trains-agent in non-docker mode.\n",
"DEFAULT_DOCKER_IMAGE = \"nvidia/cuda\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Controller Internal Definitions\n",
"\n",
"# maximum idle time in minutes, after which the instance will be shutdown\n",
"MAX_IDLE_TIME_MIN = 15\n",
"# polling interval in minutes\n",
"# make sure to increase in case bash commands were added in EXTRA_BASH_SCRIPT\n",
"POLLING_INTERVAL_MIN = 5.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Import Packages and Budget Definition Sanity Check"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"import re\n",
"import os\n",
"from itertools import chain\n",
"from operator import itemgetter\n",
"from time import sleep, time\n",
"\n",
"import boto3\n",
"from trains_agent.backend_api.session.client import APIClient"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Sanity Check - Validate Queue Resources\n",
"if len(set(map(itemgetter(0), chain(*QUEUES.values())))) != sum(\n",
" map(len, QUEUES.values())\n",
"):\n",
" print(\n",
" \"Error: at least one resource name is used in multiple queues. \"\n",
" \"A resource name can only appear in a single queue definition.\"\n",
" )\n",
"\n",
"# Encode EXTRA_TRAINS_CONF for later bash script usage\n",
"EXTRA_TRAINS_CONF_ENCODED = \"\\\\\\\"\".join(EXTRA_TRAINS_CONF.split(\"\\\"\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Cloud specific implementation of spin up/down - currently supports AWS only"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Cloud-specific implementation (currently, only AWS EC2 is supported)\n",
"def spin_up_worker(resource, worker_id_prefix, queue_name):\n",
" \"\"\"\n",
" Creates a new worker for trains.\n",
" First, create an instance in the cloud and install some required packages.\n",
" Then, define trains-agent environment variables and run \n",
" trains-agent for the specified queue.\n",
" NOTE: - Will wait until instance is running\n",
" - This implementation assumes the instance image already has docker installed\n",
"\n",
" :param str resource: resource name, as defined in BUDGET and QUEUES.\n",
" :param str worker_id_prefix: worker name prefix\n",
" :param str queue_name: trains queue to listen to\n",
" \"\"\"\n",
" resource_conf = RESOURCE_CONFIGURATIONS[resource]\n",
" # Add worker type and AWS instance type to the worker name.\n",
" worker_id = \"{worker_id_prefix}:{worker_type}:{instance_type}\".format(\n",
" worker_id_prefix=worker_id_prefix,\n",
" worker_type=resource,\n",
" instance_type=resource_conf[\"instance_type\"],\n",
" )\n",
"\n",
" # user_data script will automatically run when the instance is started. \n",
" # It will install the required packages for trains-agent configure it using \n",
" # environment variables and run trains-agent on the required queue\n",
" user_data = \"\"\"#!/bin/bash\n",
" sudo apt-get update\n",
" sudo apt-get install -y python3-dev\n",
" sudo apt-get install -y python3-pip\n",
" sudo apt-get install -y gcc\n",
" sudo apt-get install -y git\n",
" sudo apt-get install -y build-essential\n",
" python3 -m pip install -U pip\n",
" python3 -m pip install virtualenv\n",
" python3 -m virtualenv trains_agent_venv\n",
" source trains_agent_venv/bin/activate\n",
" python -m pip install trains-agent\n",
" echo 'agent.git_user=\\\"{git_user}\\\"' >> /root/trains.conf\n",
" echo 'agent.git_pass=\\\"{git_pass}\\\"' >> /root/trains.conf\n",
" echo \"{trains_conf}\" >> /root/trains.conf\n",
" export TRAINS_API_HOST={api_server}\n",
" export TRAINS_WEB_HOST={web_server}\n",
" export TRAINS_FILES_HOST={files_server}\n",
" export DYNAMIC_INSTANCE_ID=`curl http://169.254.169.254/latest/meta-data/instance-id`\n",
" export TRAINS_WORKER_ID={worker_id}:$DYNAMIC_INSTANCE_ID\n",
" export TRAINS_API_ACCESS_KEY='{access_key}'\n",
" export TRAINS_API_SECRET_KEY='{secret_key}'\n",
" {bash_script}\n",
" python -m trains_agent --config-file '/root/trains.conf' daemon --queue '{queue}' {docker}\n",
" shutdown\n",
" \"\"\".format(\n",
" api_server=TRAINS_SERVER_API_SERVER,\n",
" web_server=TRAINS_SERVER_WEB_SERVER,\n",
" files_server=TRAINS_SERVER_FILES_SERVER,\n",
" worker_id=worker_id,\n",
" access_key=TRAINS_ACCESS_KEY,\n",
" secret_key=TRAINS_SECRET_KEY,\n",
" queue=queue_name,\n",
" git_user=TRAINS_GIT_USER,\n",
" git_pass=TRAINS_GIT_PASS,\n",
" trains_conf=EXTRA_TRAINS_CONF_ENCODED,\n",
" bash_script=EXTRA_BASH_SCRIPT,\n",
" docker=\"--docker '{}'\".format(DEFAULT_DOCKER_IMAGE) if DEFAULT_DOCKER_IMAGE else \"\"\n",
" )\n",
"\n",
" ec2 = boto3.client(\n",
" \"ec2\",\n",
" aws_access_key_id=CLOUD_CREDENTIALS_KEY or None,\n",
" aws_secret_access_key=CLOUD_CREDENTIALS_SECRET or None,\n",
" region_name=CLOUD_CREDENTIALS_REGION\n",
" )\n",
"\n",
" if resource_conf[\"is_spot\"]:\n",
" # Create a request for a spot instance in AWS\n",
" encoded_user_data = base64.b64encode(user_data.encode(\"ascii\")).decode(\"ascii\")\n",
" instances = ec2.request_spot_instances(\n",
" LaunchSpecification={\n",
" \"ImageId\": resource_conf[\"ami_id\"],\n",
" \"InstanceType\": resource_conf[\"instance_type\"],\n",
" \"Placement\": {\"AvailabilityZone\": resource_conf[\"availability_zone\"]},\n",
" \"UserData\": encoded_user_data,\n",
" \"BlockDeviceMappings\": [\n",
" {\n",
" \"DeviceName\": resource_conf[\"ebs_device_name\"],\n",
" \"Ebs\": {\n",
" \"VolumeSize\": resource_conf[\"ebs_volume_size\"],\n",
" \"VolumeType\": resource_conf[\"ebs_volume_type\"],\n",
" },\n",
" }\n",
" ],\n",
" }\n",
" )\n",
"\n",
" # Wait until spot request is fulfilled\n",
" request_id = instances[\"SpotInstanceRequests\"][0][\"SpotInstanceRequestId\"]\n",
" waiter = ec2.get_waiter(\"spot_instance_request_fulfilled\")\n",
" waiter.wait(SpotInstanceRequestIds=[request_id])\n",
" # Get the instance object for later use\n",
" response = ec2.describe_spot_instance_requests(\n",
" SpotInstanceRequestIds=[request_id]\n",
" )\n",
" instance_id = response[\"SpotInstanceRequests\"][0][\"InstanceId\"]\n",
"\n",
" else:\n",
" # Create a new EC2 instance\n",
" instances = ec2.run_instances(\n",
" ImageId=resource_conf[\"ami_id\"],\n",
" MinCount=1,\n",
" MaxCount=1,\n",
" InstanceType=resource_conf[\"instance_type\"],\n",
" UserData=user_data,\n",
" InstanceInitiatedShutdownBehavior='terminate',\n",
" BlockDeviceMappings=[\n",
" {\n",
" \"DeviceName\": resource_conf[\"ebs_device_name\"],\n",
" \"Ebs\": {\n",
" \"VolumeSize\": resource_conf[\"ebs_volume_size\"],\n",
" \"VolumeType\": resource_conf[\"ebs_volume_type\"],\n",
" },\n",
" }\n",
" ],\n",
" )\n",
"\n",
" # Get the instance object for later use\n",
" instance_id = instances[\"Instances\"][0][\"InstanceId\"]\n",
"\n",
" instance = boto3.resource(\n",
" \"ec2\",\n",
" aws_access_key_id=CLOUD_CREDENTIALS_KEY or None,\n",
" aws_secret_access_key=CLOUD_CREDENTIALS_SECRET or None,\n",
" region_name=CLOUD_CREDENTIALS_REGION\n",
" ).Instance(instance_id)\n",
"\n",
" # Wait until instance is in running state\n",
" instance.wait_until_running()\n",
"\n",
"\n",
"# Cloud-specific implementation (currently, only AWS EC2 is supported)\n",
"def spin_down_worker(instance_id):\n",
" \"\"\"\n",
" Destroys the cloud instance.\n",
"\n",
" :param str instance_id: Cloud instance ID to be destroyed \n",
" (currently, only AWS EC2 is supported)\n",
" \"\"\"\n",
" try:\n",
" boto3.resource(\n",
" \"ec2\",\n",
" aws_access_key_id=CLOUD_CREDENTIALS_KEY or None,\n",
" aws_secret_access_key=CLOUD_CREDENTIALS_SECRET or None,\n",
" region_name=CLOUD_CREDENTIALS_REGION\n",
" ).instances.filter(InstanceIds=[instance_id]).terminate()\n",
" except Exception as ex:\n",
" raise ex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Controller Implementation and Logic"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def supervisor():\n",
" \"\"\"\n",
" Spin up or down resources as necessary.\n",
" - For every queue in QUEUES do the following:\n",
" 1. Check if there are tasks waiting in the queue.\n",
" 2. Check if there are enough idle workers available for those tasks.\n",
" 3. In case more instances are required, and we haven't reached max instances allowed,\n",
" create the required instances with regards to the maximum number defined in QUEUES\n",
" Choose which instance to create according to their order QUEUES. Won't create \n",
" more instances if maximum number defined has already reached.\n",
" - spin down instances according to their idle time. instance which is idle for \n",
" more than MAX_IDLE_TIME_MIN minutes would be removed.\n",
" \"\"\"\n",
"\n",
" # Internal definitions\n",
" workers_prefix = \"dynamic_aws\"\n",
" # Worker's id in trains would be composed from:\n",
" # prefix, name, instance_type and cloud_id separated by ';'\n",
" workers_pattern = re.compile(\n",
" r\"^(?P<prefix>[^:]+):(?P<name>[^:]+):(?P<instance_type>[^:]+):(?P<cloud_id>[^:]+)\"\n",
" )\n",
"\n",
" # Set up the environment variables for trains\n",
" os.environ[\"TRAINS_API_HOST\"] = TRAINS_SERVER_API_SERVER\n",
" os.environ[\"TRAINS_WEB_HOST\"] = TRAINS_SERVER_WEB_SERVER\n",
" os.environ[\"TRAINS_FILES_HOST\"] = TRAINS_SERVER_FILES_SERVER\n",
" os.environ[\"TRAINS_API_ACCESS_KEY\"] = TRAINS_ACCESS_KEY\n",
" os.environ[\"TRAINS_API_SECRET_KEY\"] = TRAINS_SECRET_KEY\n",
" api_client = APIClient()\n",
"\n",
" idle_workers = {}\n",
" while True:\n",
" queue_name_to_id = {\n",
" queue.name: queue.id for queue in api_client.queues.get_all()\n",
" }\n",
" resource_to_queue = {\n",
" item[0]: queue\n",
" for queue, resources in QUEUES.items()\n",
" for item in resources\n",
" }\n",
" all_workers = [\n",
" worker\n",
" for worker in api_client.workers.get_all()\n",
" if workers_pattern.match(worker.id)\n",
" and workers_pattern.match(worker.id)[\"prefix\"] == workers_prefix\n",
" ]\n",
"\n",
" # Workers without a task, are added to the idle list\n",
" for worker in all_workers:\n",
" if not hasattr(worker, \"task\") or not worker.task:\n",
" if worker.id not in idle_workers:\n",
" resource_name = workers_pattern.match(worker.id)[\"instance_type\"]\n",
" idle_workers[worker.id] = (time(), resource_name, worker)\n",
" elif hasattr(worker, \"task\") and worker.task and worker.id in idle_workers:\n",
" idle_workers.pop(worker.id, None)\n",
"\n",
" required_idle_resources = [] # idle resources we'll need to keep running\n",
" allocate_new_resources = [] # resources that will need to be started\n",
" # Check if we have tasks waiting on one of the designated queues\n",
" for queue in QUEUES:\n",
" entries = api_client.queues.get_by_id(queue_name_to_id[queue]).entries\n",
" if entries and len(entries) > 0:\n",
" queue_resources = QUEUES[queue]\n",
"\n",
" # If we have an idle worker matching the required resource,\n",
" # remove it from the required allocation resources\n",
" free_queue_resources = [\n",
" resource\n",
" for _, resource, _ in idle_workers.values()\n",
" if resource in queue_resources\n",
" ]\n",
" required_idle_resources.extend(free_queue_resources)\n",
" spin_up_count = len(entries) - len(free_queue_resources)\n",
" spin_up_resources = []\n",
"\n",
" # Add as many resources as possible to handle this queue's entries\n",
" for resource, max_instances in queue_resources:\n",
" if len(spin_up_resources) >= spin_up_count:\n",
" break\n",
" max_allowed = max_instances - len(\n",
" [\n",
" worker\n",
" for worker in all_workers\n",
" if workers_pattern.match(worker.id)[\"name\"] == resource\n",
" ]\n",
" )\n",
" spin_up_resources.extend(\n",
" [resource] * min(max_allowed, spin_up_count)\n",
" )\n",
" allocate_new_resources.extend(spin_up_resources)\n",
"\n",
" # Now we actually spin the new machines\n",
" for resource in allocate_new_resources:\n",
" spin_up_worker(resource, workers_prefix, resource_to_queue[resource])\n",
"\n",
" # Go over the idle workers list, and spin down idle workers\n",
" for timestamp, resources, worker in idle_workers.values():\n",
" # skip resource types that might be needed\n",
" if resources in required_idle_resources:\n",
" continue\n",
" # Remove from both aws and trains all instances that are \n",
" # idle for longer than MAX_IDLE_TIME_MIN\n",
" if time() - timestamp > MAX_IDLE_TIME_MIN * 60.0:\n",
" cloud_id = workers_pattern.match(worker.id)[\"cloud_id\"]\n",
" spin_down_worker(cloud_id)\n",
" worker.unregister()\n",
"\n",
" # Nothing else to do\n",
" sleep(POLLING_INTERVAL_MIN * 60.0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Execute Forever* (the controller is stateless, so you can always re-execute the notebook)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Loop forever, it is okay we are stateless\n",
"while True:\n",
" try:\n",
" supervisor()\n",
" except Exception as ex:\n",
" print(\"Warning! exception occurred: {ex}\\nRetry in 15 seconds\".format(ex=ex))\n",
" sleep(15)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -5,6 +5,7 @@ future>=0.16.0
humanfriendly>=2.1
jsonmodels>=2.2
jsonschema>=2.6.0
packaging>=16.0
pathlib2>=2.3.0
psutil>=3.4.2
pyhocon>=0.3.38
@@ -15,7 +16,6 @@ PyYAML>=3.12
requests-file>=1.4.2
requests>=2.20.0
requirements_parser>=0.2.0
semantic_version>=2.6.0
six>=1.11.0
tqdm>=4.19.5
typing>=3.6.4

View File

@@ -35,7 +35,7 @@ def trains_agentyaml(tmpdir):
def _method(template_file):
file = tmpdir.join("trains_agent.yaml")
with (PROJECT_ROOT / "tests/templates" / template_file).open() as f:
code = yaml.load(f)
code = yaml.load(f, Loader=yaml.SafeLoader)
yield Namespace(code=code, file=file.strpath)
file.write(yaml.dump(code))
return _method

View File

@@ -1 +1 @@
from .backend_api.session.client import APIClient

View File

@@ -22,9 +22,12 @@
# currently supported pip and conda
# poetry is used if pip selected and repository contains poetry.lock file
package_manager: {
# supported options: pip, conda
# supported options: pip, conda, poetry
type: pip,
# specify pip version to use (examples "<20", "==19.3.1", "", empty string will install the latest version)
pip_version: "<20",
# virtual environment inheres packages from system
system_site_packages: false,
@@ -33,7 +36,6 @@
# additional artifact repositories to use when installing python packages
# extra_index_url: ["https://allegroai.jfrog.io/trainsai/api/pypi/public/simple"]
extra_index_url: []
# additional conda channels to use when installing with conda package manager
conda_channels: ["defaults", "conda-forge", "pytorch", ]
@@ -69,6 +71,17 @@
# apt cache folder used mapped into docker, for ubuntu package caching
docker_apt_cache = ~/.trains/apt-cache
# optional arguments to pass to docker image
# these are local for this agent and will not be updated in the experiment's docker_cmd section
# extra_docker_arguments: ["--ipc=host", ]
# optional shell script to run in docker when started before the experiment is started
# extra_docker_shell_script: ["apt-get install -y bindfs", ]
# set to true in order to force "docker pull" before running an experiment using a docker image.
# This makes sure the docker image is updated.
docker_force_pull: false
default_docker: {
# default docker image to use when running in docker mode
image: "nvidia/cuda"

View File

@@ -3,6 +3,7 @@ from .v2_4 import debug
from .v2_4 import queues
from .v2_4 import tasks
from .v2_4 import workers
from .v2_4 import events
__all__ = [
'auth',
@@ -10,4 +11,5 @@ __all__ = [
'queues',
'tasks',
'workers',
'events',
]

File diff suppressed because it is too large Load Diff

View File

@@ -139,13 +139,25 @@ class Response(object):
:param dest: if all of a response's data is contained in one field, use that field
:type dest: Text
"""
self.response = None
self._result = result
response = getattr(result, "response", result)
if getattr(response, "_service") == "events" and \
getattr(response, "_action") in ("scalar_metrics_iter_histogram",
"multi_task_scalar_metrics_iter_histogram",
"vector_metrics_iter_histogram",
):
# put all the response data under metrics:
response.metrics = result.response_data
if 'metrics' not in response.__class__._get_data_props():
response.__class__._data_props_list['metrics'] = 'metrics'
if dest:
response = getattr(response, dest)
self.response = response
def __getattr__(self, attr):
if self.response is None:
return None
return getattr(self.response, attr)
@property
@@ -493,6 +505,7 @@ class APIClient(object):
queues = None # type: Any
tasks = None # type: Any
workers = None # type: Any
events = None # type: Any
def __init__(self, session=None, api_version=None):
self.session = session or StrictSession()

View File

@@ -150,6 +150,18 @@ def main():
git_user = None
git_pass = None
# get extra-index-url for pip installations
extra_index_urls = []
print('\nEnter additional artifact repository (extra-index-url) to use when installing python packages '
'(leave blank if not required):', end='')
index_url = input().strip()
while index_url:
extra_index_urls.append(index_url)
print('Another artifact repository? (enter another url or leave blank if done):', end='')
index_url = input().strip()
if len(extra_index_urls):
print("The following artifact repositories will be added:\n\t- {}".format("\n\t- ".join(extra_index_urls)))
# noinspection PyBroadException
try:
conf_folder = Path(__file__).parent.absolute() / '..' / 'backend_api' / 'config' / 'default'
@@ -183,6 +195,10 @@ def main():
'agent.git_pass=\"{}\"\n' \
'\n'.format(git_user or '', git_pass or '')
f.write(git_credentials)
extra_index_str = '# extra_index_url: ["https://allegroai.jfrog.io/trainsai/api/pypi/public/simple"]\n' \
'agent.package_manager.extra_index_url= ' \
'[\n{}\n]\n\n'.format("\n".join(map("\"{}\"".format, extra_index_urls)))
f.write(extra_index_str)
f.write(default_conf)
except Exception:
print('Error! Could not write configuration file at: {}'.format(str(conf_file)))

View File

@@ -59,11 +59,12 @@ from trains_agent.helper.base import (
is_conda,
named_temporary_file,
ExecutionInfo,
HOCONEncoder, error, get_python_path)
HOCONEncoder, error, get_python_path, is_linux_platform)
from trains_agent.helper.console import ensure_text
from trains_agent.helper.package.base import PackageManager
from trains_agent.helper.package.conda_api import CondaAPI
from trains_agent.helper.package.horovod_req import HorovodRequirement
from trains_agent.helper.package.external_req import ExternalRequirements
from trains_agent.helper.package.pip_api.system import SystemPip
from trains_agent.helper.package.pip_api.venv import VirtualenvPip
from trains_agent.helper.package.poetry_api import PoetryConfig, PoetryAPI
@@ -287,6 +288,7 @@ class Worker(ServiceCommandSection):
PytorchRequirement,
CythonRequirement,
HorovodRequirement,
ExternalRequirements,
)
# poll queues every _polling_interval seconds
@@ -350,10 +352,13 @@ class Worker(ServiceCommandSection):
self.is_venv_update = self._session.config.agent.venv_update.enabled
self.poetry = PoetryConfig(self._session)
self.poetry.initialize()
self.docker_image_func = None
self._docker_image = None
self._docker_arguments = None
PackageManager.set_pip_version(self._session.config.get("agent.package_manager.pip_version", None))
self._extra_docker_arguments = self._session.config.get("agent.extra_docker_arguments", None)
self._extra_shell_script = self._session.config.get("agent.extra_docker_shell_script", None)
self._docker_force_pull = self._session.config.get("agent.docker_force_pull", False)
self._daemon_foreground = None
self._standalone_mode = None
@@ -413,6 +418,7 @@ class Worker(ServiceCommandSection):
)
)
docker_image = None
if self.docker_image_func:
try:
response = get_task(self._session, task_id, only_fields=["execution.docker_cmd"])
@@ -467,6 +473,19 @@ class Worker(ServiceCommandSection):
try:
# set WORKER ID
os.environ['TRAINS_WORKER_ID'] = self.worker_id
if self._docker_force_pull and docker_image:
full_pull_cmd = ['docker', 'pull', docker_image]
pull_cmd = Argv(*full_pull_cmd)
status, stop_signal_status = self._log_command_output(
task_id=task_id,
cmd=pull_cmd,
stdout_path=temp_stdout_name,
stderr_path=temp_stderr_name,
daemon=True,
stop_signal=stop_signal,
)
status, stop_signal_status = self._log_command_output(
task_id=task_id,
cmd=cmd,
@@ -736,9 +755,9 @@ class Worker(ServiceCommandSection):
stdout = open(stdout_path, "wt")
stderr = open(stderr_path, "wt") if stderr_path else stdout
stdout_line_count, stdout_last_lines = 0, []
stderr_line_count, stderr_last_lines = 0, []
try:
stdout_line_count, stdout_last_lines = 0, []
stderr_line_count, stderr_last_lines = 0, []
status = None
stopping = False
_last_machine_update_ts = time()
@@ -786,6 +805,16 @@ class Worker(ServiceCommandSection):
# non zero return code
stop_reason = 'Exception occurred'
status = ex.returncode
except KeyboardInterrupt:
# so someone else will catch us
raise
except Exception:
# we should not get here, but better safe than sorry
stdout_line_count += self.send_logs(task_id, _print_file(stdout_path, stdout_line_count))
if stderr_path:
stderr_line_count += self.send_logs(task_id, _print_file(stderr_path, stderr_line_count))
stop_reason = 'Exception occurred'
status = -1
stdout.close()
if stderr_path:
@@ -876,8 +905,6 @@ class Worker(ServiceCommandSection):
):
if not task_id:
raise CommandFailedError("Worker build must have valid task id")
if not check_if_command_exists("virtualenv"):
raise CommandFailedError("Worker must have virtualenv installed")
self._session.print_configuration()
@@ -907,8 +934,9 @@ class Worker(ServiceCommandSection):
repo_info,
requirements_manager=requirements_manager,
cached_requirements=requirements,
cwd=vcs.location if vcs and vcs.location else directory,
)
freeze = self.freeze_task_environment()
freeze = self.freeze_task_environment(requirements_manager=requirements_manager)
script_dir = directory
# Summary
@@ -1006,8 +1034,6 @@ class Worker(ServiceCommandSection):
):
if not task_id:
raise CommandFailedError("Worker execute must have valid task id")
if not check_if_command_exists("virtualenv"):
raise CommandFailedError("Worker must have virtualenv installed")
try:
current_task = self._session.api_client.tasks.get_by_id(task_id)
@@ -1079,11 +1105,13 @@ class Worker(ServiceCommandSection):
repo_info,
requirements_manager=requirements_manager,
cached_requirements=requirements,
cwd=vcs.location if vcs and vcs.location else directory,
)
# do not update the task packages if we are using conda,
# it will most likely make the task environment unreproducible
freeze = self.freeze_task_environment(current_task.id if not self.is_conda else None)
freeze = self.freeze_task_environment(current_task.id if not self.is_conda else None,
requirements_manager=requirements_manager)
script_dir = (directory if isinstance(directory, Path) else Path(directory)).absolute().as_posix()
# run code
@@ -1124,7 +1152,8 @@ class Worker(ServiceCommandSection):
self._update_commit_id(task_id, execution, repo_info)
# Add the script CWD to the python path
python_path = get_python_path(script_dir, execution.entry_point, self.package_api)
python_path = get_python_path(script_dir, execution.entry_point, self.package_api) \
if not self.is_conda else None
if python_path:
os.environ['PYTHONPATH'] = python_path
@@ -1132,11 +1161,12 @@ class Worker(ServiceCommandSection):
exit_code = -1
try:
if disable_monitoring:
use_execv = is_linux_platform() and not isinstance(self.package_api, (PoetryAPI, CondaAPI))
try:
sys.stdout.flush()
sys.stderr.flush()
os.chdir(script_dir)
if not is_windows_platform():
if use_execv:
os.execv(command.argv[0].as_posix(), tuple([command.argv[0].as_posix()])+command.argv[1:])
else:
exit_code = command.check_call(cwd=script_dir)
@@ -1144,10 +1174,10 @@ class Worker(ServiceCommandSection):
except subprocess.CalledProcessError as ex:
# non zero return code
exit_code = ex.returncode
if is_windows_platform():
if not use_execv:
exit(exit_code)
except Exception as ex:
if is_windows_platform():
if not use_execv:
exit(-1)
raise ex
else:
@@ -1346,13 +1376,17 @@ class Worker(ServiceCommandSection):
status_message=self._task_status_change_message,
)
def freeze_task_environment(self, task_id=None):
def freeze_task_environment(self, task_id=None, requirements_manager=None):
try:
freeze = self.package_api.freeze()
except Exception as e:
print("Could not freeze installed packages")
self.log_traceback(e)
return None
if requirements_manager:
freeze = requirements_manager.replace_back(freeze)
if not task_id:
return freeze
@@ -1377,8 +1411,12 @@ class Worker(ServiceCommandSection):
if not repo_info:
return None
try:
if not self.poetry.enabled:
return None
self.poetry.initialize(cwd=repo_info.root)
api = self.poetry.get_api(repo_info.root)
if api.enabled:
print('Poetry Enabled: Ignoring requested python packages, using repository poetry lock file!')
api.install()
return api
except Exception:
@@ -1386,7 +1424,7 @@ class Worker(ServiceCommandSection):
return None
def install_requirements(
self, execution, repo_info, requirements_manager, cached_requirements=None
self, execution, repo_info, requirements_manager, cached_requirements=None, cwd=None,
):
# type: (ExecutionInfo, RepoInfo, RequirementsManager, Optional[dict]) -> None
"""
@@ -1399,6 +1437,8 @@ class Worker(ServiceCommandSection):
:param requirements_manager: requirements manager for task
:param cached_requirements: cached requirements from previous run
"""
if self.package_api:
self.package_api.cwd = cwd
api = self._install_poetry_requirements(repo_info)
if api:
self.package_api = api
@@ -1420,7 +1460,7 @@ class Worker(ServiceCommandSection):
except Exception as e:
self.log_traceback(e)
cached_requirements_failed = True
raise ValueError("Could not install task requirements!")
raise ValueError("Could not install task requirements!\n{}".format(e))
else:
self.log("task requirements installation passed")
return
@@ -1595,14 +1635,20 @@ class Worker(ServiceCommandSection):
requested_python_version = requested_python_version or \
Text(self._session.config.get("agent.python_binary", None)) or \
Text(self._session.config.get("agent.default_python", None))
executable_version, executable_version_suffix, executable_name = self.find_python_executable_for_version(
requested_python_version
)
if self.is_conda:
executable_version_suffix = \
requested_python_version[max(requested_python_version.find('python'), 0):].replace('python', '')
executable_name = 'python'
else:
executable_version, executable_version_suffix, executable_name = self.find_python_executable_for_version(
requested_python_version
)
self._session.config.put("agent.default_python", executable_version)
self._session.config.put("agent.python_binary", executable_name)
venv_dir = Path(venv_dir) if venv_dir else \
Path(self._session.config["agent.venvs_dir"], executable_version_suffix)
self._session.config.put("agent.default_python", executable_version)
self._session.config.put("agent.python_binary", executable_name)
first_time = not standalone_mode and (
is_windows_platform()
or self.is_conda
@@ -1745,9 +1791,19 @@ class Worker(ServiceCommandSection):
# store docker arguments
self._docker_image = docker_image
self._docker_arguments = docker_arguments
extra_shell_script_str = ""
if self._extra_shell_script:
cmds = self._extra_shell_script
if not isinstance(cmds, (list, tuple)):
cmds = [cmds]
extra_shell_script_str = " ; ".join(map(str, cmds)) + " ; "
docker_cmd = dict(worker_id=self.worker_id,
# docker_image=docker_image,
# docker_arguments=docker_arguments,
extra_docker_arguments=self._extra_docker_arguments,
extra_shell_script=extra_shell_script_str,
python_version=python_version, conf_file=self.temp_config_path,
host_apt_cache=host_apt_cache,
host_pip_cache=host_pip_cache,
@@ -1766,7 +1822,8 @@ class Worker(ServiceCommandSection):
host_ssh_cache,
host_cache, mounted_cache,
host_pip_dl, mounted_pip_dl,
host_vcs_cache, mounted_vcs_cache, standalone_mode=False):
host_vcs_cache, mounted_vcs_cache,
standalone_mode=False, extra_docker_arguments=None, extra_shell_script=None):
docker = 'docker'
base_cmd = [docker, 'run', '-t']
@@ -1783,6 +1840,11 @@ class Worker(ServiceCommandSection):
if isinstance(docker_arguments, (list, tuple)) else [docker_arguments]
base_cmd += [a for a in docker_arguments if a]
if extra_docker_arguments:
extra_docker_arguments = [extra_docker_arguments] \
if isinstance(extra_docker_arguments, six.string_types) else extra_docker_arguments
base_cmd += [str(a) for a in extra_docker_arguments if a]
base_cmd += ['-e', 'TRAINS_WORKER_ID='+worker_id, ]
if host_ssh_cache:
@@ -1807,10 +1869,11 @@ class Worker(ServiceCommandSection):
"chown -R root /root/.cache/pip ; " \
"apt-get update ; " \
"apt-get install -y git libsm6 libxext6 libxrender-dev libglib2.0-0 {python_single_digit}-pip ; " \
"{python} -m pip install -U pip ; " \
"{python} -m pip install -U \"pip{pip_version}\" ; " \
"{python} -m pip install -U trains-agent{specify_version} ; ".format(
python_single_digit=python_version.split('.')[0],
python=python_version, specify_version=specify_version)
python=python_version, pip_version=PackageManager.get_pip_version(),
specify_version=specify_version)
base_cmd += [
'-v', conf_file+':/root/trains.conf',
@@ -1821,6 +1884,7 @@ class Worker(ServiceCommandSection):
'-v', host_vcs_cache+':'+mounted_vcs_cache,
'--rm', docker_image, 'bash', '-c',
update_scheme +
extra_shell_script +
"NVIDIA_VISIBLE_DEVICES=all {python} -u -m trains_agent ".format(python=python_version)
]

View File

@@ -157,6 +157,10 @@ def is_windows_platform():
return any(platform.win32_ver())
def is_linux_platform():
return 'linux' in platform.system().lower()
def normalize_path(*paths):
"""
normalize_path

View File

@@ -4,7 +4,7 @@ from time import sleep
import requests
import json
from threading import Thread
from semantic_version import Version
from packaging import version as packaging_version
from ..version import __version__
__check_update_thread = None
@@ -30,8 +30,8 @@ def _check_new_version_available():
return None
trains_answer = update_server_releases.get("trains-agent", {})
latest_version = trains_answer.get("version")
cur_version = Version(cur_version)
latest_version = Version(latest_version)
cur_version = packaging_version.parse(cur_version)
latest_version = packaging_version.parse(latest_version or '')
if cur_version >= latest_version:
return None
patch_upgrade = latest_version.major == cur_version.major and latest_version.minor == cur_version.minor

View File

@@ -16,6 +16,8 @@ class PackageManager(object):
"""
_selected_manager = None
_cwd = None
_pip_version = None
@abc.abstractproperty
def bin(self):
@@ -64,7 +66,7 @@ class PackageManager(object):
pass
def upgrade_pip(self):
return self._install("pip", "--upgrade")
return self._install("pip"+self.get_pip_version(), "--upgrade")
def get_python_command(self, extra=()):
# type: (...) -> Executable
@@ -97,11 +99,42 @@ class PackageManager(object):
# this is helpful when we want out of context requirement installations
PackageManager._selected_manager = self
@property
def cwd(self):
return self._cwd
@cwd.setter
def cwd(self, value):
self._cwd = value
@classmethod
def out_of_scope_install_package(cls, package_name):
def out_of_scope_install_package(cls, package_name, *args):
if PackageManager._selected_manager is not None:
try:
return PackageManager._selected_manager._install(package_name)
return PackageManager._selected_manager._install(package_name, *args)
except Exception:
pass
return
return
@classmethod
def out_of_scope_freeze(cls):
if PackageManager._selected_manager is not None:
try:
return PackageManager._selected_manager.freeze()
except Exception:
pass
return []
@classmethod
def set_pip_version(cls, version):
if not version:
return
version = version.replace(' ', '')
if ('=' in version) or ('~' in version) or ('<' in version) or ('>' in version):
cls._pip_version = version
else:
cls._pip_version = "=="+version
@classmethod
def get_pip_version(cls):
return cls._pip_version or ''

View File

@@ -14,7 +14,7 @@ import yaml
from time import time
from attr import attrs, attrib, Factory
from pathlib2 import Path
from semantic_version import Version
from packaging import version as packaging_version
from requirements import parse
from requirements.requirement import Requirement
@@ -59,7 +59,7 @@ class CondaAPI(PackageManager):
A programmatic interface for controlling conda
"""
MINIMUM_VERSION = Version("4.3.30", partial=True)
MINIMUM_VERSION = packaging_version.parse("4.3.30")
def __init__(self, session, path, python, requirements_manager):
# type: (Session, PathLike, float, RequirementsManager) -> None
@@ -93,7 +93,7 @@ class CondaAPI(PackageManager):
)
)
self.conda_version = self.get_conda_version(output)
if Version(self.conda_version, partial=True) < self.MINIMUM_VERSION:
if packaging_version.parse(self.conda_version) < self.MINIMUM_VERSION:
raise CommandFailedError(
"conda version '{}' is smaller than minimum supported conda version '{}'".format(
self.conda_version, self.MINIMUM_VERSION
@@ -227,20 +227,20 @@ class CondaAPI(PackageManager):
self.pip.install_from_file(reqs)
def freeze(self):
# result = yaml.load(
# self._run_command((self.conda, "env", "export", "-p", self.path), raw=True)
# )
# for key in "name", "prefix":
# result.pop(key, None)
# freeze = {"conda": result}
# try:
# freeze["pip"] = result["dependencies"][-1]["pip"]
# except (TypeError, KeyError):
# freeze["pip"] = []
# else:
# del result["dependencies"][-1]
# return freeze
return self.pip.freeze()
requirements = self.pip.freeze()
try:
conda_packages = json.loads(self._run_command((self.conda, "list", "--json", "-p", self.path), raw=True))
conda_packages_txt = []
requirements_pip = [r.split('==')[0].strip().lower() for r in requirements['pip']]
for pkg in conda_packages:
# skip if this is a pypi package or it is not a python package at all
if pkg['channel'] == 'pypi' or pkg['name'].lower() not in requirements_pip:
continue
conda_packages_txt.append('{0}{1}{2}'.format(pkg['name'], '==', pkg['version']))
requirements['conda'] = conda_packages_txt
except:
pass
return requirements
def load_requirements(self, requirements):
# create new environment file
@@ -249,6 +249,8 @@ class CondaAPI(PackageManager):
reqs = []
if isinstance(requirements['pip'], six.string_types):
requirements['pip'] = requirements['pip'].split('\n')
if isinstance(requirements.get('conda'), six.string_types):
requirements['conda'] = requirements['conda'].split('\n')
has_torch = False
has_matplotlib = False
try:
@@ -256,35 +258,86 @@ class CondaAPI(PackageManager):
except:
cuda_version = 0
for r in requirements['pip']:
marker = list(parse(r))
if marker:
m = MarkerRequirement(marker[0])
if m.req.name.lower() == 'matplotlib':
has_matplotlib = True
elif m.req.name.lower().startswith('torch'):
has_torch = True
# notice 'conda' entry with empty string is a valid conda requirements list, it means pip only
# this should happen if experiment was executed on non-conda machine or old trains client
conda_supported_req = requirements['pip'] if requirements.get('conda', None) is None else requirements['conda']
conda_supported_req_names = []
for r in conda_supported_req:
try:
marker = list(parse(r))
except:
marker = None
if not marker:
continue
if m.req.name.lower() in ('torch', 'pytorch'):
has_torch = True
m.req.name = 'pytorch'
m = MarkerRequirement(marker[0])
conda_supported_req_names.append(m.name.lower())
if m.req.name.lower() == 'matplotlib':
has_matplotlib = True
elif m.req.name.lower().startswith('torch'):
has_torch = True
if m.req.name.lower() in ('tensorflow_gpu', 'tensorflow-gpu', 'tensorflow'):
has_torch = True
m.req.name = 'tensorflow-gpu' if cuda_version > 0 else 'tensorflow'
if m.req.name.lower() in ('torch', 'pytorch'):
has_torch = True
m.req.name = 'pytorch'
if m.req.name.lower() in ('tensorflow_gpu', 'tensorflow-gpu', 'tensorflow'):
has_torch = True
m.req.name = 'tensorflow-gpu' if cuda_version > 0 else 'tensorflow'
reqs.append(m)
reqs.append(m)
pip_requirements = []
# if we have a conda list, the rest should be installed with pip,
if requirements.get('conda', None) is not None:
for r in requirements['pip']:
try:
marker = list(parse(r))
except:
marker = None
if not marker:
continue
m = MarkerRequirement(marker[0])
m_name = m.name.lower()
if m_name in conda_supported_req_names:
# this package is in the conda list,
# make sure that if we changed version and we match it in conda
conda_supported_req_names.remove(m_name)
for cr in reqs:
if m_name == cr.name.lower():
# match versions
cr.specs = m.specs
break
else:
# not in conda, it is a pip package
pip_requirements.append(m)
if m_name == 'matplotlib':
has_matplotlib = True
# remove any leftover conda packages (they were removed from the pip list)
if conda_supported_req_names:
reqs = [r for r in reqs if r.name.lower() not in conda_supported_req_names]
# Conda requirements Hacks:
if has_matplotlib:
reqs.append(MarkerRequirement(Requirement.parse('graphviz')))
reqs.append(MarkerRequirement(Requirement.parse('python-graphviz')))
reqs.append(MarkerRequirement(Requirement.parse('kiwisolver')))
if has_torch and cuda_version == 0:
reqs.append(MarkerRequirement(Requirement.parse('cpuonly')))
# conform conda packages (version/name)
for r in reqs:
# remove .post from version numbers, it fails ~= version, and change == to ~=
if r.specs and r.specs[0]:
r.specs = [(r.specs[0][0].replace('==', '~='), r.specs[0][1].split('.post')[0])]
# conda always likes "-" not "_"
r.req.name = r.req.name.replace('_', '-')
while reqs:
conda_env['dependencies'] = [r.tostr().replace('==', '=') for r in reqs]
# notice, we give conda more freedom in version selection, to help it choose best combination
conda_env['dependencies'] = [r.tostr() for r in reqs]
with self.temp_file("conda_env", yaml.dump(conda_env), suffix=".yml") as name:
print('Conda: Trying to install requirements:\n{}'.format(conda_env['dependencies']))
result = self._run_command(
@@ -297,7 +350,7 @@ class CondaAPI(PackageManager):
solved = False
for bad_r in bad_req:
name = bad_r.split('[')[0].split('=')[0]
name = bad_r.split('[')[0].split('=')[0].split('~')[0].split('<')[0].split('>')[0]
# look for name in requirements
for r in reqs:
if r.name.lower() == name.lower():
@@ -338,7 +391,7 @@ class CondaAPI(PackageManager):
if len(empty_lines) >= 2:
deps = error_lines[empty_lines[0]+1:empty_lines[1]]
try:
return yaml.load('\n'.join(deps))
return yaml.load('\n'.join(deps), Loader=yaml.SafeLoader)
except:
return None
return None
@@ -412,4 +465,4 @@ class PackageNotFoundError(CondaException):
as a singleton YAML list.
"""
pkg = attrib(default="", converter=lambda val: yaml.load(val)[0].replace(" ", ""))
pkg = attrib(default="", converter=lambda val: yaml.load(val, Loader=yaml.SafeLoader)[0].replace(" ", ""))

View File

@@ -13,7 +13,7 @@ class CythonRequirement(SimpleSubstitution):
def match(self, req):
# match both Cython & cython
return self.name == req.name.lower()
return req.name and self.name == req.name.lower()
def replace(self, req):
"""

View File

@@ -0,0 +1,60 @@
from collections import OrderedDict
from typing import Text
from .base import PackageManager
from .requirements import SimpleSubstitution
class ExternalRequirements(SimpleSubstitution):
name = "external_link"
def __init__(self, *args, **kwargs):
super(ExternalRequirements, self).__init__(*args, **kwargs)
self.post_install_req = []
self.post_install_req_lookup = OrderedDict()
def match(self, req):
# match both editable or code or unparsed
if not (not req.name or req.req and (req.req.editable or req.req.vcs)):
return False
if not req.req or not req.req.line or not req.req.line.strip() or req.req.line.strip().startswith('#'):
return False
return True
def post_install(self):
post_install_req = self.post_install_req
self.post_install_req = []
for req in post_install_req:
try:
freeze_base = PackageManager.out_of_scope_freeze() or ''
except:
freeze_base = ''
PackageManager.out_of_scope_install_package(req.tostr(markers=False), "--no-deps")
try:
freeze_post = PackageManager.out_of_scope_freeze() or ''
package_name = list(set(freeze_post['pip']) - set(freeze_base['pip']))
if package_name and package_name[0] not in self.post_install_req_lookup:
self.post_install_req_lookup[package_name[0]] = req.req.line
except:
pass
PackageManager.out_of_scope_install_package(req.tostr(markers=False), "--ignore-installed")
def replace(self, req):
"""
Replace a requirement
:raises: ValueError if version is pre-release
"""
# Store in post req install, and return nothing
self.post_install_req.append(req)
# mark skip package, we will install it in post install hook
return Text('')
def replace_back(self, list_of_requirements):
if 'pip' in list_of_requirements:
original_requirements = list_of_requirements['pip']
list_of_requirements['pip'] = [r for r in original_requirements
if r not in self.post_install_req_lookup]
list_of_requirements['pip'] += [self.post_install_req_lookup.get(r, '')
for r in self.post_install_req_lookup.keys() if r in original_requirements]
return list_of_requirements

View File

@@ -14,7 +14,7 @@ class HorovodRequirement(SimpleSubstitution):
def match(self, req):
# match both horovod
return self.name == req.name.lower()
return req.name and self.name == req.name.lower()
def post_install(self):
if self.post_install_req:

View File

@@ -29,13 +29,13 @@ class SystemPip(PackageManager):
pass
def install_from_file(self, path):
self.run_with_env(('install', '-r', path) + self.install_flags())
self.run_with_env(('install', '-r', path) + self.install_flags(), cwd=self.cwd)
def install_packages(self, *packages):
self._install(*(packages + self.install_flags()))
def _install(self, *args):
self.run_with_env(('install',) + args)
self.run_with_env(('install',) + args, cwd=self.cwd)
def uninstall_packages(self, *packages):
self.run_with_env(('uninstall', '-y') + packages)
@@ -82,7 +82,7 @@ class SystemPip(PackageManager):
return (command.get_output if output else command.check_call)(stdin=DEVNULL, **kwargs)
def _make_command(self, command):
return Argv(self.bin, '-m', 'pip', *command)
return Argv(self.bin, '-m', 'pip', '--disable-pip-version-check', *command)
def install_flags(self):
if self.indices_args is None:

View File

@@ -33,7 +33,7 @@ class VirtualenvPip(SystemPip, PackageManager):
self.python = python
def _make_command(self, command):
return self.session.command(self.bin, "-m", "pip", *command)
return self.session.command(self.bin, "-m", "pip", "--disable-pip-version-check", *command)
def load_requirements(self, requirements):
if isinstance(requirements, dict) and requirements.get("pip"):

View File

@@ -1,8 +1,11 @@
from copy import deepcopy
from functools import wraps
import attr
import sys
import os
from pathlib2 import Path
from trains_agent.helper.process import Argv, DEVNULL
from trains_agent.helper.process import Argv, DEVNULL, check_if_command_exists
from trains_agent.session import Session, POETRY
@@ -35,10 +38,12 @@ def prop_guard(prop, log_prop=None):
class PoetryConfig:
def __init__(self, session):
# type: (Session) -> ()
def __init__(self, session, interpreter=None):
# type: (Session, str) -> ()
self.session = session
self._log = session.get_logger(__name__)
self._python = interpreter or sys.executable
self._initialized = False
@property
def log(self):
@@ -53,7 +58,20 @@ class PoetryConfig:
def run(self, *args, **kwargs):
func = kwargs.pop("func", Argv.get_output)
kwargs.setdefault("stdin", DEVNULL)
argv = Argv("poetry", "-n", *args)
kwargs['env'] = deepcopy(os.environ)
if 'VIRTUAL_ENV' in kwargs['env'] or 'CONDA_PREFIX' in kwargs['env']:
kwargs['env'].pop('VIRTUAL_ENV', None)
kwargs['env'].pop('CONDA_PREFIX', None)
kwargs['env'].pop('PYTHONPATH', None)
if hasattr(sys, "real_prefix") and hasattr(sys, "base_prefix"):
path = ':'+kwargs['env']['PATH']
path = path.replace(':'+sys.base_prefix, ':'+sys.real_prefix, 1)
kwargs['env']['PATH'] = path
if check_if_command_exists("poetry"):
argv = Argv("poetry", *args)
else:
argv = Argv(self._python, "-m", "poetry", *args)
self.log.debug("running: %s", argv)
return func(argv, **kwargs)
@@ -61,10 +79,12 @@ class PoetryConfig:
return self.run("config", *args, **kwargs)
@_guard_enabled
def initialize(self):
self._config("settings.virtualenvs.in-project", "true")
# self._config("repositories.{}".format(self.REPO_NAME), PYTHON_INDEX)
# self._config("http-basic.{}".format(self.REPO_NAME), *PYTHON_INDEX_CREDENTIALS)
def initialize(self, cwd=None):
if not self._initialized:
self._initialized = True
self._config("--local", "virtualenvs.in-project", "true", cwd=cwd)
# self._config("repositories.{}".format(self.REPO_NAME), PYTHON_INDEX)
# self._config("http-basic.{}".format(self.REPO_NAME), *PYTHON_INDEX_CREDENTIALS)
def get_api(self, path):
# type: (Path) -> PoetryAPI
@@ -81,7 +101,7 @@ class PoetryAPI(object):
def install(self):
# type: () -> bool
if self.enabled:
self.config.run("install", cwd=str(self.path), func=Argv.check_call)
self.config.run("install", "-n", cwd=str(self.path), func=Argv.check_call)
return True
return False
@@ -92,10 +112,15 @@ class PoetryAPI(object):
)
def freeze(self):
return {"poetry": self.config.run("show", cwd=str(self.path)).splitlines()}
lines = self.config.run("show", cwd=str(self.path)).splitlines()
lines = [[p for p in line.split(' ') if p] for line in lines]
return {"pip": [parts[0]+'=='+parts[1]+' # '+' '.join(parts[2:]) for parts in lines]}
def get_python_command(self, extra):
return Argv("poetry", "run", "python", *extra)
if check_if_command_exists("poetry"):
return Argv("poetry", "run", "python", *extra)
else:
return Argv(self.config._python, "-m", "poetry", "run", "python", *extra)
def upgrade_pip(self, *args, **kwargs):
pass

View File

@@ -10,7 +10,8 @@ from typing import Text
import attr
import requests
from semantic_version import Version, Spec
from packaging import version as packaging_version
from packaging.specifiers import SpecifierSet
import six
from .requirements import SimpleSubstitution, FatalSpecsResolutionError
@@ -155,10 +156,16 @@ class PytorchRequirement(SimpleSubstitution):
self.os = os_name or self.get_platform()
self.cuda = "cuda{}".format(self.cuda_version).lower()
self.python_version_string = str(self.config["agent.default_python"])
self.python_semantic_version = Version.coerce(
self.python_version_string, partial=True
)
self.python = "python{}.{}".format(self.python_semantic_version.major, self.python_semantic_version.minor)
self.python_major_minor_str = '.'.join(packaging_version.parse(
self.python_version_string).base_version.split('.')[:2])
if '.' not in self.python_major_minor_str:
raise PytorchResolutionError(
"invalid python version {!r} defined in configuration file, key 'agent.default_python': "
"must have both major and minor parts of the version (for example: '3.7')".format(
self.python_version_string
)
)
self.python = "python{}".format(self.python_major_minor_str)
self.exceptions = [
PytorchResolutionError(message)
@@ -188,9 +195,7 @@ class PytorchRequirement(SimpleSubstitution):
"""
Make sure python version has both major and minor versions as required for choosing pytorch wheel
"""
if self.is_pip and not (
self.python_semantic_version.major and self.python_semantic_version.minor
):
if self.is_pip and not self.python_major_minor_str:
raise PytorchResolutionError(
"invalid python version {!r} defined in configuration file, key 'agent.default_python': "
"must have both major and minor parts of the version (for example: '3.7')".format(
@@ -215,8 +220,10 @@ class PytorchRequirement(SimpleSubstitution):
links_parser = LinksHTMLParser()
links_parser.feed(requests.get(torch_url, timeout=10).text)
platform_wheel = "win" if self.get_platform() == "windows" else self.get_platform()
py_ver = "{0.major}{0.minor}".format(self.python_semantic_version)
py_ver = self.python_major_minor_str.replace('.', '')
url = None
spec = SpecifierSet(req.format_specs())
last_v = None
# search for our package
for l in links_parser.links:
parts = l.split('/')[-1].split('-')
@@ -225,21 +232,40 @@ class PytorchRequirement(SimpleSubstitution):
if parts[0] != req.name:
continue
# version (ignore +cpu +cu92 etc. + is %2B in the file link)
if parts[1].split('%')[0].split('+')[0] != req.specs[0][1]:
# version ignore .postX suffix (treat as regular version)
try:
v = packaging_version.parse(parts[1].split('%')[0].split('+')[0])
except Exception:
continue
if v not in spec or (last_v and last_v > v):
continue
if not parts[2].endswith(py_ver):
continue
if platform_wheel not in parts[4]:
continue
url = '/'.join(torch_url.split('/')[:-1] + l.split('/'))
break
last_v = v
return url
def get_url_for_platform(self, req):
assert self.package_manager == "pip"
assert self.os != "mac"
assert req.specs
# check if package is already installed with system packages
try:
if self.config.get("agent.package_manager.system_site_packages"):
from pip._internal.commands.show import search_packages_info
installed_torch = list(search_packages_info([req.name]))
op, version = req.specs[0] if req.specs else (None, None)
# notice the comparision order, the first part will make sure we have a valid installed package
if installed_torch[0]['version'] and (installed_torch[0]['version'] == version or not version):
# package already installed, do nothing
return str(req), True
except:
pass
# make sure we have a specific version to retrieve
if not req.specs:
req.specs = [('>', '0')]
try:
req.specs[0] = (req.specs[0][0], req.specs[0][1].split('+')[0])
except:
@@ -266,7 +292,7 @@ class PytorchRequirement(SimpleSubstitution):
if not url:
url = PytorchWheel(
torch_version=fix_version(version),
python="{0.major}{0.minor}".format(self.python_semantic_version),
python=self.python_major_minor_str.replace('.', ''),
os_name=self.os,
cuda_version=self.cuda_version,
).make_url()
@@ -280,13 +306,13 @@ class PytorchRequirement(SimpleSubstitution):
@staticmethod
def match_version(req, options):
versioned_options = sorted(
((Version(fix_version(key)), value) for key, value in options.items()),
((packaging_version.parse(fix_version(key)), value) for key, value in options.items()),
key=itemgetter(0),
reverse=True,
)
req.specs = [(op, fix_version(version)) for op, version in req.specs]
if req.specs:
specs = Spec(req.format_specs())
specs = SpecifierSet(req.format_specs())
else:
specs = None
try:

View File

@@ -8,9 +8,9 @@ from copy import deepcopy
from itertools import chain, starmap
from operator import itemgetter
from os import path
from typing import Text, List, Type, Optional, Tuple
from typing import Text, List, Type, Optional, Tuple, Dict
import semantic_version
from packaging import version as packaging_version
from pathlib2 import Path
from pyhocon import ConfigTree
from requirements import parse
@@ -48,7 +48,7 @@ class MarkerRequirement(object):
def tostr(self, markers=True):
if not self.uri:
parts = [self.name]
parts = [self.name or self.line]
if self.extras:
parts.append('[{0}]'.format(','.join(sorted(self.extras))))
@@ -177,13 +177,20 @@ class SimpleSubstitution(RequirementSubstitution):
if req.specs:
_, version_number = req.specs[0]
assert semantic_version.Version(version_number, partial=True)
assert packaging_version.parse(version_number)
else:
version_number = self.get_pip_version(self.name)
req.specs = [('==', version_number + self.suffix)]
return Text(req)
def replace_back(self, list_of_requirements): # type: (Dict) -> Dict
"""
:param list_of_requirements: {'pip': ['a==1.0', ]}
:return: {'pip': ['a==1.0', ]}
"""
return list_of_requirements
@six.add_metaclass(ABCMeta)
class CudaSensitiveSubstitution(SimpleSubstitution):
@@ -235,15 +242,17 @@ class RequirementsManager(object):
return None
def replace(self, requirements): # type: (Text) -> Text
def safe_parse(req_str):
try:
return next(parse(req_str))
except Exception as ex:
return Requirement(req_str)
parsed_requirements = tuple(
map(
MarkerRequirement,
filter(
None,
parse(requirements)
if isinstance(requirements, six.text_type)
else (next(parse(line), None) for line in requirements)
)
[safe_parse(line) for line in (requirements.splitlines()
if isinstance(requirements, six.text_type) else requirements)]
)
)
if not parsed_requirements:
@@ -258,7 +267,7 @@ class RequirementsManager(object):
warning('could not resolve python wheel replacement for {}'.format(req))
raise
except Exception:
warning('could not resolve python wheel replacement for {}, '
warning('could not resolve python wheel replacement for \"{}\", '
'using original requirements line: {}'.format(req, i))
return None
@@ -280,6 +289,14 @@ class RequirementsManager(object):
except Exception as ex:
print('RequirementsManager handler {} raised exception: {}'.format(h, ex))
def replace_back(self, requirements):
for h in self.handlers:
try:
requirements = h.replace_back(requirements)
except Exception:
pass
return requirements
@staticmethod
def get_cuda_version(config): # type: (ConfigTree) -> (Text, Text)
# we assume os.environ already updated the config['agent.cuda_version'] & config['agent.cudnn_version']

View File

@@ -42,7 +42,9 @@ class VcsFactory(object):
:param location: (desired) clone location
"""
url = execution_info.repository
is_git = url.endswith(cls.GIT_SUFFIX)
# We only support git, hg is deprecated
is_git = True
# is_git = url.endswith(cls.GIT_SUFFIX)
vcs_cls = Git if is_git else Hg
revision = (
execution_info.version_num

View File

@@ -206,6 +206,15 @@ class Session(_Session):
config.pop('env', None)
if remove_secret_keys:
recursive_remove_secrets(config, secret_keys=remove_secret_keys)
# remove logging.loggers.urllib3.level from the print
try:
config['logging']['loggers']['urllib3'].pop('level', None)
except (KeyError, TypeError, AttributeError):
pass
try:
config['logging'].pop('version', None)
except (KeyError, TypeError, AttributeError):
pass
config = ConfigFactory.from_dict(config)
self.log.debug("Run by interpreter: %s", sys.executable)
print(

View File

@@ -1 +1 @@
__version__ = '0.12.2'
__version__ = '0.13.1'