From 9fa8d7264016ac06a0eebb89f43cfe70428ee4bd Mon Sep 17 00:00:00 2001
From: clearml <>
Date: Mon, 13 Jan 2025 18:36:16 +0200
Subject: [PATCH] Update github repo link
---
LICENSE | 2 +-
README.md | 34 +++++++++++++++++-----------------
setup.py | 4 ++--
3 files changed, 20 insertions(+), 20 deletions(-)
diff --git a/LICENSE b/LICENSE
index ec79a07..9700080 100644
--- a/LICENSE
+++ b/LICENSE
@@ -186,7 +186,7 @@
same "printed page" as the copyright notice for easier
identification within third-party archives.
- Copyright 2019 allegro.ai
+ Copyright 2025 ClearML Inc
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
diff --git a/README.md b/README.md
index 4e2ee00..6b2956c 100644
--- a/README.md
+++ b/README.md
@@ -1,15 +1,15 @@
-
+
**ClearML Agent - MLOps/LLMOps made easy
MLOps/LLMOps scheduler & orchestration solution supporting Linux, macOS and Windows**
-[![GitHub license](https://img.shields.io/github/license/allegroai/clearml-agent.svg)](https://img.shields.io/github/license/allegroai/clearml-agent.svg)
+[![GitHub license](https://img.shields.io/github/license/clearml/clearml-agent.svg)](https://img.shields.io/github/license/clearml/clearml-agent.svg)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
[![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg)
[![PyPI Downloads](https://pepy.tech/badge/clearml-agent/month)](https://pypi.org/project/clearml-agent/)
-[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/allegroai)](https://artifacthub.io/packages/search?repo=allegroai)
+[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/clearml)](https://artifacthub.io/packages/search?repo=clearml)
`🌟 ClearML is open-source - Leave a star to support the project! 🌟`
@@ -33,21 +33,21 @@ It is a zero configuration fire-and-forget execution agent, providing a full ML/
**Full Automation in 5 steps**
-1. ClearML Server [self-hosted](https://github.com/allegroai/clearml-server)
+1. ClearML Server [self-hosted](https://github.com/clearml/clearml-server)
or [free tier hosting](https://app.clear.ml)
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine:
on-premises / cloud / ...)
3. Create a [job](https://clear.ml/docs/latest/docs/apps/clearml_task) or
- add [ClearML](https://github.com/allegroai/clearml) to your code with just 2 lines of code
+ add [ClearML](https://github.com/clearml/clearml) to your code with just 2 lines of code
4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or
automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
-**Try ClearML now** [Self Hosted](https://github.com/allegroai/clearml-server)
+**Try ClearML now** [Self Hosted](https://github.com/clearml/clearml-server)
or [Free tier Hosting](https://app.clear.ml)
-
+
### Simple, Flexible Experiment Orchestration
@@ -71,7 +71,7 @@ or [Free tier Hosting](https://app.clear.ml)
We think Kubernetes is awesome, but it is not a must to get started with remote execution agents and cluster management.
We designed `clearml-agent` so you can run both bare-metal and on top of Kubernetes, in any combination that fits your environment.
-You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart in https://github.com/allegroai/clearml-helm-charts
+You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart in https://github.com/clearml/clearml-helm-charts
#### Benefits of integrating existing Kubernetes cluster with ClearML
@@ -86,8 +86,8 @@ You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart
- **Enterprise Features**: RBAC, vault, multi-tenancy, scheduler, quota management, fractional GPU support
**Run the agent in Kubernetes Glue mode an map ClearML jobs directly to K8s jobs:**
-- Use the [ClearML Agent Helm Chart](https://github.com/allegroai/clearml-helm-charts/tree/main/charts/clearml-agent) to spin an agent pod acting as a controller
- - Or run the [clearml-k8s glue](https://github.com/allegroai/clearml-agent/blob/master/examples/k8s_glue_example.py) on
+- Use the [ClearML Agent Helm Chart](https://github.com/clearml/clearml-helm-charts/tree/main/charts/clearml-agent) to spin an agent pod acting as a controller
+ - Or run the [clearml-k8s glue](https://github.com/clearml/clearml-agent/blob/master/examples/k8s_glue_example.py) on
a Kubernetes cpu node
- The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a Kubernetes job (based on provided
yaml template)
@@ -151,7 +151,7 @@ The ClearML Agent executes experiments using the following process:
#### System Design & Flow
-
+
#### Installing the ClearML Agent
@@ -279,7 +279,7 @@ clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:11
### How do I create an experiment on the ClearML Server?
-* Integrate [ClearML](https://github.com/allegroai/clearml) with your code
+* Integrate [ClearML](https://github.com/clearml/clearml) with your code
* Execute the code on your machine (Manually / PyCharm / Jupyter Notebook)
* As your code is running, **ClearML** creates an experiment logging all the necessary execution information:
- Git repository link and commit ID (or an entire jupyter notebook)
@@ -326,21 +326,21 @@ The ClearML Agent can also be used to implement AutoML orchestration and Experim
ClearML package.
Sample AutoML & Orchestration examples can be found in the
-ClearML [example/automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder.
+ClearML [example/automation](https://github.com/clearml/clearml/tree/master/examples/automation) folder.
AutoML examples:
-- [Toy Keras training experiment](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
+- [Toy Keras training experiment](https://github.com/clearml/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
- In order to create an experiment-template in the system, this code must be executed once manually
-- [Random Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
+- [Random Search over the above Keras experiment-template](https://github.com/clearml/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
- This example will create multiple copies of the Keras experiment-template, with different hyperparameter
combinations
Experiment Pipeline examples:
-- [First step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py)
+- [First step experiment](https://github.com/clearml/clearml/blob/master/examples/automation/task_piping_example.py)
- This example will "process data", and once done, will launch a copy of the 'second step' experiment-template
-- [Second step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py)
+- [Second step experiment](https://github.com/clearml/clearml/blob/master/examples/automation/toy_base_task.py)
- In order to create an experiment-template in the system, this code must be executed once manually
### License
diff --git a/setup.py b/setup.py
index 411ec39..be50ee3 100644
--- a/setup.py
+++ b/setup.py
@@ -1,7 +1,7 @@
"""
ClearML Inc.
CLEARML-AGENT DevOps for machine/deep learning
-https://github.com/allegroai/clearml-agent
+https://github.com/clearml/clearml-agent
"""
import os.path
@@ -39,7 +39,7 @@ setup(
long_description=long_description,
long_description_content_type='text/markdown',
# The project's main homepage.
- url='https://github.com/allegroai/clearml-agent',
+ url='https://github.com/clearml/clearml-agent',
author='clearml',
author_email='clearml@clearml.ai',
license='Apache License 2.0',