Fix documentation links

This commit is contained in:
allegroai 2021-04-12 23:01:22 +03:00
parent 537b67e0cd
commit 5be5f3209d

View File

@ -5,7 +5,7 @@
**ClearML Agent - ML-Ops made easy **ClearML Agent - ML-Ops made easy
ML-Ops scheduler & orchestration solution supporting Linux, macOS and Windows** ML-Ops scheduler & orchestration solution supporting Linux, macOS and Windows**
[![GitHub license](https://img.shields.io/github/license/allegroai/trains-agent.svg)](https://img.shields.io/github/license/allegroai/trains-agent.svg) [![GitHub license](https://img.shields.io/github/license/allegroai/clearml-agent.svg)](https://img.shields.io/github/license/allegroai/clearml-agent.svg)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg) [![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
[![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg) [![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg)
@ -28,16 +28,16 @@ ML-Ops scheduler & orchestration solution supporting Linux, macOS and Windows**
It is a zero configuration fire-and-forget execution agent, providing a full ML/DL cluster solution. It is a zero configuration fire-and-forget execution agent, providing a full ML/DL cluster solution.
**Full Automation in 5 steps** **Full Automation in 5 steps**
1. ClearML Server [self-hosted](https://github.com/allegroai/trains-server) or [free tier hosting](https://app.community.clear.ml) 1. ClearML Server [self-hosted](https://github.com/allegroai/clearml-server) or [free tier hosting](https://app.community.clear.ml)
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine: on-premises / cloud / ...) 2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine: on-premises / cloud / ...)
3. Create a [job](https://github.com/allegroai/clearml/docs/clearml-task.md) or Add [ClearML](https://github.com/allegroai/trains) to your code with just 2 lines 3. Create a [job](https://github.com/allegroai/clearml/docs/clearml-task.md) or Add [ClearML](https://github.com/allegroai/clearml) to your code with just 2 lines
4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-)) 4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer: 5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that" "All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
**Try ClearML now** [Self Hosted](https://github.com/allegroai/trains-server) or [Free tier Hosting](https://app.community.clear.ml) **Try ClearML now** [Self Hosted](https://github.com/allegroai/clearml-server) or [Free tier Hosting](https://app.community.clear.ml)
<a href="https://app.community.clear.ml"><img src="https://raw.githubusercontent.com/allegroai/trains-agent/9f1e86c1ca45c984ee13edc9353c7b10c55d7257/docs/screenshots.gif" width="100%"></a> <a href="https://app.community.clear.ml"><img src="https://github.com/allegroai/clearml/blob/master/docs/webapp_screenshots.gif?raw=true" width="100%"></a>
### Simple, Flexible Experiment Orchestration ### Simple, Flexible Experiment Orchestration
**The ClearML Agent was built to address the DL/ML R&D DevOps needs:** **The ClearML Agent was built to address the DL/ML R&D DevOps needs:**
@ -68,13 +68,13 @@ We designed `clearml-agent` so you can run bare-metal or inside a pod with any m
**Two K8s integration flavours** **Two K8s integration flavours**
- Spin ClearML-Agent as a long-lasting service pod - Spin ClearML-Agent as a long-lasting service pod
- use [clearml-agent](https://hub.docker.com/r/allegroai/trains-agent) docker image - use [clearml-agent](https://hub.docker.com/r/allegroai/clearml-agent) docker image
- map docker socket into the pod (soon replaced by [podman](https://github.com/containers/podman)) - map docker socket into the pod (soon replaced by [podman](https://github.com/containers/podman))
- allow the clearml-agent to manage sibling dockers - allow the clearml-agent to manage sibling dockers
- benefits: full use of the ClearML scheduling, no need to worry about wrong container images / lost pods etc. - benefits: full use of the ClearML scheduling, no need to worry about wrong container images / lost pods etc.
- downside: Sibling containers - downside: Sibling containers
- Kubernetes Glue, map ClearML jobs directly to K8s jobs - Kubernetes Glue, map ClearML jobs directly to K8s jobs
- Run the [clearml-k8s glue](https://github.com/allegroai/trains-agent/blob/master/examples/k8s_glue_example.py) on a K8s cpu node - Run the [clearml-k8s glue](https://github.com/allegroai/clearml-agent/blob/master/examples/k8s_glue_example.py) on a K8s cpu node
- The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a K8s job (based on provided yaml template) - The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a K8s job (based on provided yaml template)
- Inside the pod itself the clearml-agent will install the job (experiment) environment and spin and monitor the experiment's process - Inside the pod itself the clearml-agent will install the job (experiment) environment and spin and monitor the experiment's process
- benefits: Kubernetes full view of all running jobs in the system - benefits: Kubernetes full view of all running jobs in the system
@ -229,7 +229,7 @@ clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:10
``` ```
### How do I create an experiment on the ClearML Server? <a name="from-scratch"></a> ### How do I create an experiment on the ClearML Server? <a name="from-scratch"></a>
* Integrate [ClearML](https://github.com/allegroai/trains) with your code * Integrate [ClearML](https://github.com/allegroai/clearml) with your code
* Execute the code on your machine (Manually / PyCharm / Jupyter Notebook) * Execute the code on your machine (Manually / PyCharm / Jupyter Notebook)
* As your code is running, **ClearML** creates an experiment logging all the necessary execution information: * As your code is running, **ClearML** creates an experiment logging all the necessary execution information:
- Git repository link and commit ID (or an entire jupyter notebook) - Git repository link and commit ID (or an entire jupyter notebook)
@ -273,18 +273,18 @@ clearml-agent daemon --services-mode --detached --queue services --create-queue
### AutoML and Orchestration Pipelines <a name="automl-pipes"></a> ### AutoML and Orchestration Pipelines <a name="automl-pipes"></a>
The ClearML Agent can also be used to implement AutoML orchestration and Experiment Pipelines in conjunction with the ClearML package. The ClearML Agent can also be used to implement AutoML orchestration and Experiment Pipelines in conjunction with the ClearML package.
Sample AutoML & Orchestration examples can be found in the ClearML [example/automation](https://github.com/allegroai/trains/tree/master/examples/automation) folder. Sample AutoML & Orchestration examples can be found in the ClearML [example/automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder.
AutoML examples AutoML examples
- [Toy Keras training experiment](https://github.com/allegroai/trains/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py) - [Toy Keras training experiment](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
- In order to create an experiment-template in the system, this code must be executed once manually - In order to create an experiment-template in the system, this code must be executed once manually
- [Random Search over the above Keras experiment-template](https://github.com/allegroai/trains/blob/master/examples/automation/manual_random_param_search_example.py) - [Random Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
- This example will create multiple copies of the Keras experiment-template, with different hyper-parameter combinations - This example will create multiple copies of the Keras experiment-template, with different hyper-parameter combinations
Experiment Pipeline examples Experiment Pipeline examples
- [First step experiment](https://github.com/allegroai/trains/blob/master/examples/automation/task_piping_example.py) - [First step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py)
- This example will "process data", and once done, will launch a copy of the 'second step' experiment-template - This example will "process data", and once done, will launch a copy of the 'second step' experiment-template
- [Second step experiment](https://github.com/allegroai/trains/blob/master/examples/automation/toy_base_task.py) - [Second step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py)
- In order to create an experiment-template in the system, this code must be executed once manually - In order to create an experiment-template in the system, this code must be executed once manually
### License ### License