From 5be5f3209d936647b021f019e977edb805b783e1 Mon Sep 17 00:00:00 2001
From: allegroai <>
Date: Mon, 12 Apr 2021 23:01:22 +0300
Subject: [PATCH] Fix documentation links
---
README.md | 26 +++++++++++++-------------
1 file changed, 13 insertions(+), 13 deletions(-)
diff --git a/README.md b/README.md
index c03f5c6..1ebf8d6 100644
--- a/README.md
+++ b/README.md
@@ -5,7 +5,7 @@
**ClearML Agent - ML-Ops made easy
ML-Ops scheduler & orchestration solution supporting Linux, macOS and Windows**
-[![GitHub license](https://img.shields.io/github/license/allegroai/trains-agent.svg)](https://img.shields.io/github/license/allegroai/trains-agent.svg)
+[![GitHub license](https://img.shields.io/github/license/allegroai/clearml-agent.svg)](https://img.shields.io/github/license/allegroai/clearml-agent.svg)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
[![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg)
@@ -28,16 +28,16 @@ ML-Ops scheduler & orchestration solution supporting Linux, macOS and Windows**
It is a zero configuration fire-and-forget execution agent, providing a full ML/DL cluster solution.
**Full Automation in 5 steps**
-1. ClearML Server [self-hosted](https://github.com/allegroai/trains-server) or [free tier hosting](https://app.community.clear.ml)
+1. ClearML Server [self-hosted](https://github.com/allegroai/clearml-server) or [free tier hosting](https://app.community.clear.ml)
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine: on-premises / cloud / ...)
-3. Create a [job](https://github.com/allegroai/clearml/docs/clearml-task.md) or Add [ClearML](https://github.com/allegroai/trains) to your code with just 2 lines
+3. Create a [job](https://github.com/allegroai/clearml/docs/clearml-task.md) or Add [ClearML](https://github.com/allegroai/clearml) to your code with just 2 lines
4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
-**Try ClearML now** [Self Hosted](https://github.com/allegroai/trains-server) or [Free tier Hosting](https://app.community.clear.ml)
-
+**Try ClearML now** [Self Hosted](https://github.com/allegroai/clearml-server) or [Free tier Hosting](https://app.community.clear.ml)
+
### Simple, Flexible Experiment Orchestration
**The ClearML Agent was built to address the DL/ML R&D DevOps needs:**
@@ -68,13 +68,13 @@ We designed `clearml-agent` so you can run bare-metal or inside a pod with any m
**Two K8s integration flavours**
- Spin ClearML-Agent as a long-lasting service pod
- - use [clearml-agent](https://hub.docker.com/r/allegroai/trains-agent) docker image
+ - use [clearml-agent](https://hub.docker.com/r/allegroai/clearml-agent) docker image
- map docker socket into the pod (soon replaced by [podman](https://github.com/containers/podman))
- allow the clearml-agent to manage sibling dockers
- benefits: full use of the ClearML scheduling, no need to worry about wrong container images / lost pods etc.
- downside: Sibling containers
- Kubernetes Glue, map ClearML jobs directly to K8s jobs
- - Run the [clearml-k8s glue](https://github.com/allegroai/trains-agent/blob/master/examples/k8s_glue_example.py) on a K8s cpu node
+ - Run the [clearml-k8s glue](https://github.com/allegroai/clearml-agent/blob/master/examples/k8s_glue_example.py) on a K8s cpu node
- The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a K8s job (based on provided yaml template)
- Inside the pod itself the clearml-agent will install the job (experiment) environment and spin and monitor the experiment's process
- benefits: Kubernetes full view of all running jobs in the system
@@ -229,7 +229,7 @@ clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:10
```
### How do I create an experiment on the ClearML Server?
-* Integrate [ClearML](https://github.com/allegroai/trains) with your code
+* Integrate [ClearML](https://github.com/allegroai/clearml) with your code
* Execute the code on your machine (Manually / PyCharm / Jupyter Notebook)
* As your code is running, **ClearML** creates an experiment logging all the necessary execution information:
- Git repository link and commit ID (or an entire jupyter notebook)
@@ -273,18 +273,18 @@ clearml-agent daemon --services-mode --detached --queue services --create-queue
### AutoML and Orchestration Pipelines
The ClearML Agent can also be used to implement AutoML orchestration and Experiment Pipelines in conjunction with the ClearML package.
-Sample AutoML & Orchestration examples can be found in the ClearML [example/automation](https://github.com/allegroai/trains/tree/master/examples/automation) folder.
+Sample AutoML & Orchestration examples can be found in the ClearML [example/automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder.
AutoML examples
- - [Toy Keras training experiment](https://github.com/allegroai/trains/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
+ - [Toy Keras training experiment](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
- In order to create an experiment-template in the system, this code must be executed once manually
- - [Random Search over the above Keras experiment-template](https://github.com/allegroai/trains/blob/master/examples/automation/manual_random_param_search_example.py)
+ - [Random Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
- This example will create multiple copies of the Keras experiment-template, with different hyper-parameter combinations
Experiment Pipeline examples
- - [First step experiment](https://github.com/allegroai/trains/blob/master/examples/automation/task_piping_example.py)
+ - [First step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py)
- This example will "process data", and once done, will launch a copy of the 'second step' experiment-template
- - [Second step experiment](https://github.com/allegroai/trains/blob/master/examples/automation/toy_base_task.py)
+ - [Second step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py)
- In order to create an experiment-template in the system, this code must be executed once manually
### License