mirror of
https://github.com/princeton-nlp/tree-of-thought-llm
synced 2025-01-22 10:35:31 +00:00
99 lines
3.3 KiB
Python
99 lines
3.3 KiB
Python
import os
|
|
import re
|
|
from tasks.base import Task, DATA_PATH
|
|
from prompts.text import *
|
|
from models import gpt
|
|
|
|
|
|
class TextTask(Task):
|
|
"""
|
|
Input (x) : a text instruction
|
|
Output (y) : a text generation
|
|
Reward (r) : # TODO
|
|
Input Example:
|
|
Output Example:
|
|
"""
|
|
def __init__(self, file='data_100_random_text.txt'):
|
|
"""
|
|
file: a text file, each line is some sentences
|
|
"""
|
|
super().__init__()
|
|
path = os.path.join(DATA_PATH, 'text', file)
|
|
self.data = open(path).readlines()
|
|
self.steps = 2
|
|
self.stops = ['\nPassage:\n', None]
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.data)
|
|
|
|
def get_input(self, idx: int) -> str:
|
|
return self.data[idx]
|
|
|
|
def test_output(self, idx: int, output: str):
|
|
output = output.split('Passage:\n')[-1]
|
|
prompt = score_prompt + output
|
|
score_outputs = gpt(prompt, n=5, model='gpt-4')
|
|
scores = []
|
|
for score_output in score_outputs:
|
|
# print(score_output)
|
|
pattern = r".*coherency score is (\d+).*"
|
|
match = re.match(pattern, score_output, re.DOTALL)
|
|
if match:
|
|
score = int(match.groups()[0])
|
|
scores.append(score)
|
|
else:
|
|
print(f'------------------score no match: {[score_output]}')
|
|
print(scores)
|
|
# print('------------')
|
|
info = {'rs': scores, 'r': sum(scores) / len(scores) if scores else 0}
|
|
return info
|
|
|
|
@staticmethod
|
|
def standard_prompt_wrap(x: str, y:str='') -> str:
|
|
return standard_prompt.format(input=x) + y
|
|
|
|
@staticmethod
|
|
def cot_prompt_wrap(x: str, y:str='') -> str:
|
|
return cot_prompt.format(input=x) + y
|
|
|
|
@staticmethod
|
|
def vote_prompt_wrap(x: str, ys: list) -> str:
|
|
prompt = vote_prompt
|
|
for i, y in enumerate(ys, 1):
|
|
# y = y.replace('Plan:\n', '')
|
|
# TODO: truncate the plan part?
|
|
prompt += f'Choice {i}:\n{y}\n'
|
|
return prompt
|
|
|
|
@staticmethod
|
|
def vote_outputs_unwrap(vote_outputs: list, n_candidates: int) -> list:
|
|
vote_results = [0] * n_candidates
|
|
for vote_output in vote_outputs:
|
|
pattern = r".*best choice is .*(\d+).*"
|
|
match = re.match(pattern, vote_output, re.DOTALL)
|
|
if match:
|
|
vote = int(match.groups()[0]) - 1
|
|
if vote in range(n_candidates):
|
|
vote_results[vote] += 1
|
|
else:
|
|
print(f'vote no match: {[vote_output]}')
|
|
return vote_results
|
|
|
|
@staticmethod
|
|
def compare_prompt_wrap(x: str, ys: list) -> str:
|
|
assert len(ys) == 2, 'compare prompt only supports 2 candidates'
|
|
ys = [y.split('Passage:\n')[-1] for y in ys]
|
|
prompt = compare_prompt + f'Passage 1:\n{ys[0]}\n\nPassage 2:\n{ys[1]}\n'
|
|
return prompt
|
|
|
|
@staticmethod
|
|
def compare_output_unwrap(compare_output: str):
|
|
if 'more coherent passage is 1' in compare_output:
|
|
return 0
|
|
elif 'more coherent passage is 2' in compare_output:
|
|
return 1
|
|
elif 'two passages are similarly coherent' in compare_output:
|
|
return 0.5
|
|
else:
|
|
print(f'-----------------compare no match: {[compare_output]}')
|
|
return -1 |