import os import openai import backoff completion_tokens = prompt_tokens = 0 @backoff.on_exception(backoff.expo, openai.error.OpenAIError) def completions_with_backoff(**kwargs): return openai.ChatCompletion.create(**kwargs) def gpt(prompt, model="gpt-4", temperature=0.7, max_tokens=1000, n=1, stop=None) -> list: messages = [{"role": "user", "content": prompt}] return chatgpt(messages, model=model, temperature=temperature, max_tokens=max_tokens, n=n, stop=stop) def chatgpt(messages, model="gpt-4", temperature=0.7, max_tokens=1000, n=1, stop=None) -> list: global completion_tokens, prompt_tokens outputs = [] while n > 0: cnt = min(n, 20) n -= cnt res = completions_with_backoff(model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, n=cnt, stop=stop) outputs.extend([choice["message"]["content"] for choice in res["choices"]]) # log completion tokens completion_tokens += res["usage"]["completion_tokens"] prompt_tokens += res["usage"]["prompt_tokens"] return outputs def gpt_usage(backend="gpt-4"): global completion_tokens, prompt_tokens if backend == "gpt-4": cost = completion_tokens / 1000 * 0.06 + prompt_tokens / 1000 * 0.03 elif backend == "gpt-3.5-turbo": cost = (completion_tokens + prompt_tokens) / 1000 * 0.0002 return {"completion_tokens": completion_tokens, "prompt_tokens": prompt_tokens, "cost": cost}