adding qat run

This commit is contained in:
emilyworks 2024-12-11 20:37:54 +00:00
parent 8cd496a0f8
commit 7bf040fe28
8 changed files with 370 additions and 12 deletions

File diff suppressed because one or more lines are too long

View File

@ -60,7 +60,7 @@ def load_llama(quant=None):
# model = AutoModelForCausalLM.from_pretrained("src/tot/quant/ptq_int8", device_map="cuda", weights_only=False)
model = torch.compile(model, mode="max-autotune")
elif args.quantize and args.quantize == 'qat':
model = AutoModelForCausalLM.from_pretrained("src/tot/quant/qat_int8", device_map="cuda", weights_only=False)
model = AutoModelForCausalLM.from_pretrained("src/tot/quant/qat_int8_20", device_map="cuda", weights_only=False)
model = torch.compile(model, mode="max-autotune")
elif args.lora:
model = AutoPeftModelForCausalLM.from_pretrained("src/tot/lora")
@ -410,23 +410,23 @@ if __name__ == '__main__':
args = parse_args()
#test base instruct llama
print(args)
run(args)
#test quant llama w/ qat int8
# args.quantize="qat"
# print(args)
# run(args)
#test llama w/ ptq int4
args.quantize="ptq_int4"
#test quant llama w/ qat int8
args.quantize="qat"
print(args)
run(args)
#test llama w/ ptq int4
# args.quantize="ptq_int4"
# print(args)
# run(args)
#test llama w/ ptq int8
args.quantize="ptq_int8"
print(args)
run(args)
# args.quantize="ptq_int8"
# print(args)
# run(args)
#test llama w/ lora
# args.quantize=None

View File

@ -0,0 +1,202 @@
---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2

View File

@ -0,0 +1,29 @@
{
"alpha_pattern": {},
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
"bias": "none",
"fan_in_fan_out": false,
"inference_mode": true,
"init_lora_weights": true,
"layer_replication": null,
"layers_pattern": null,
"layers_to_transform": null,
"loftq_config": {},
"lora_alpha": 32,
"lora_dropout": 0.1,
"megatron_config": null,
"megatron_core": "megatron.core",
"modules_to_save": null,
"peft_type": "LORA",
"r": 32,
"rank_pattern": {},
"revision": null,
"target_modules": [
"v_proj",
"q_proj"
],
"task_type": "CAUSAL_LM",
"use_dora": false,
"use_rslora": false
}

Binary file not shown.

View File

@ -0,0 +1,40 @@
{
"_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 3072,
"initializer_range": 0.02,
"intermediate_size": 8192,
"max_position_embeddings": 131072,
"mlp_bias": false,
"model_type": "llama",
"num_attention_heads": 24,
"num_hidden_layers": 28,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 32.0,
"high_freq_factor": 4.0,
"low_freq_factor": 1.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
},
"rope_theta": 500000.0,
"tie_word_embeddings": true,
"torch_dtype": "float32",
"transformers_version": "4.46.3",
"use_cache": true,
"vocab_size": 128256
}

View File

@ -0,0 +1,12 @@
{
"bos_token_id": 128000,
"do_sample": true,
"eos_token_id": [
128001,
128008,
128009
],
"temperature": 0.6,
"top_p": 0.9,
"transformers_version": "4.46.3"
}

View File

@ -1,2 +1,2 @@
,total_accuracy,total runtime,total setup time,average solving time,average proposal time,average eval time,peak memory usage
0,0.0,627.7139296419919,23.9375716640061,12.074782435418165,1.5538430808399184,2.4684065076932895,5936145408
0,0.36,8534.825585576,20.54914576400006,170.28468542943995,53.28617168473993,3.4693667665331667,15705424896

1 total_accuracy total runtime total setup time average solving time average proposal time average eval time peak memory usage
2 0 0.0 0.36 627.7139296419919 8534.825585576 23.9375716640061 20.54914576400006 12.074782435418165 170.28468542943995 1.5538430808399184 53.28617168473993 2.4684065076932895 3.4693667665331667 5936145408 15705424896